Association of SET domain and myotubularin-related proteins modulates growth control.
Several proteins that contribute to epigenetic mechanisms of gene regulation contain a characteristic motif of unknown function called the SET (Suvar3-9, Enhancer-of-zeste, Trithorax) domain. We have demonstrated that SET domains mediate highly conserved interactions with a specific family of proteins that display similarity with dual-specificity phosphatases (dsPTPases). These include myotubularin, the gene of which is mutated in a subset of patients with X-linked myotubular myopathy, and Sbf1, a newly isolated homologue of myotubularin. In contrast with myotubularin, Sbf1 lacks a functional catalytic domain which dephosphorylates phospho-tyrosine and serine-containing peptides in vitro. Competitive interference of endogenous SET domain-dsPTPase interactions by forced expression of Sbf1 induced oncogenic transformation of NIH 3T3 fibroblasts and impaired the in vitro differentiation of C2 myoblast cells. We conclude that myotubularin-type phosphatases link SET-domain containing components of the epigenetic regulatory machinery with signalling pathways involved in growth and differentiation.[1]References
- Association of SET domain and myotubularin-related proteins modulates growth control. Cui, X., De Vivo, I., Slany, R., Miyamoto, A., Firestein, R., Cleary, M.L. Nat. Genet. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg