The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Spermine is not essential for growth of Saccharomyces cerevisiae: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant.

Spermine, ubiquitously present in most organisms, is the final product of the biosynthetic pathway for polyamines and is synthesized from spermidine. In order to investigate the physiological roles of spermine, we identified the SPE4 gene, which codes for spermine synthase, on the right arm of chromosome XII of Saccharomyces cerevisiae and prepared a deletion mutant in this gene. This mutant has neither spermine nor spermine synthase activity. Using the spe4 deletion mutant, we show that S. cerevisiae does not require spermine for growth, even though spermine is normally present in the wild-type organism. This is in striking contrast to the absolute requirement of S. cerevisiae for spermidine for growth, which we had previously reported using a mutant lacking the SPE3 gene (spermidine synthase) [Hamasaki-Katagiri, N., Tabor, C. W., Tabor, H., 1997. Spermidine biosynthesis in Saccharomyces cerevisiae: Polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187, 35-43].[1]

References

 
WikiGenes - Universities