The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

G1-phase regulators, cyclin D1, cyclin D2, and cyclin D3: up-regulation at gastrulation and dynamic expression during neurulation.

Gastrulation in rodents is associated with an increase in the rate of growth and with the start of differentiation within the embryo proper. In an effort to understand the role played by the cell cycle control in these processes, expression of cyclin D1, D2, and D3--three major positive regulators of the G1/S transition--has been investigated by in situ hybrization and RT-PCR. Cyclin D1 and D2 transcripts are first detected in the epiblast at gastrulation, when a proliferative burst occurs, and subsequently in its differentiated derivatives within the embryo proper, indicating that activation of their expression takes place prior to the differentiation of epiblast progenitors. In contrast, cyclin D3 transcript is undetectable in the epiblast itself and its expression is activated exclusively in extraembryonic tissues of both epiblast and trophoblast origin. During neurulation, expression of each cyclin D RNA is dynamically regulated along the anterior-posterior axis. In the hindbrain, cyclin D1 and D2 show distinct segment-specific restricted expression and this pattern is conserved between mouse and chick. These results strongly suggest that D-type cyclins act as developmental regulators.[1]

References

  1. G1-phase regulators, cyclin D1, cyclin D2, and cyclin D3: up-regulation at gastrulation and dynamic expression during neurulation. Wianny, F., Real, F.X., Mummery, C.L., Van Rooijen, M., Lahti, J., Samarut, J., Savatier, P. Dev. Dyn. (1998) [Pubmed]
 
WikiGenes - Universities