Ion tolerance of Saccharomyces cerevisiae lacking the Ca2+/CaM-dependent phosphatase (calcineurin) is improved by mutations in URE2 or PMA1.
Calcineurin is a conserved, Ca2+/CaM-stimulated protein phosphatase required for Ca2+-dependent signaling in many cell types. In yeast, calcineurin is essential for growth in high concentrations of Na+, Li+, Mn2+, and OH-, and for maintaining viability during prolonged treatment with mating pheromone. In contrast, the growth of calcineurin-mutant yeast is better than that of wild-type cells in the presence of high concentrations of Ca2+. We identified mutations that suppress multiple growth defects of calcineurin-deficient yeast (cnb1Delta or cna1Delta cna2Delta). Mutations in URE2 suppress the sensitivity of calcineurin mutants to Na+, Li+, and Mn2+, and increase their survival during treatment with mating pheromone. ure2 mutations require both the transcription factor Gln3p and the Na+ ATPase Pmr2p to confer Na+ and Li+ tolerance. Mutations in PMA1, which encodes the yeast plasma membrane H+-ATPase, also suppress many growth defects of calcineurin mutants. pma1 mutants display growth phenotypes that are opposite to those of calcineurin mutants; they are resistant to Na+, Li+, and Mn2+, and sensitive to Ca2+. We also show that calcineurin mutants are sensitive to aminoglycoside antibiotics such as hygromycin B while pma1 mutants are more resistant than wild type. Furthermore, pma1 and calcineurin mutations have antagonistic effects on intracellular [Na+] and [Ca2+]. Finally, we show that yeast expressing a constitutively active allele of calcineurin display pma1-like phenotypes, and that membranes from these yeast have decreased levels of Pma1p activity. These studies further characterize the roles that URE2 and PMA1 play in regulating intracellular ion homeostasis.[1]References
- Ion tolerance of Saccharomyces cerevisiae lacking the Ca2+/CaM-dependent phosphatase (calcineurin) is improved by mutations in URE2 or PMA1. Withee, J.L., Sen, R., Cyert, M.S. Genetics (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg