The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Kinetics of inhibition of rabbit reticulocyte peptidyltransferase by anisomycin and sparsomycin.

A detailed kinetic study was carried out on the inhibitory mechanisms of two eukaryotic peptidyltransferase drugs (I), anisomycin and sparsomycin. In an in vitro system from rabbit reticulocytes, AcPhe-puromycin is produced in a pseudo-first-order reaction from the preformed AcPhe-tRNA/poly(U)/80S ribosome complex (complex C) and excess puromycin (S). This reaction is inhibited by anisomycin and sparsomycin through different mechanisms. Anisomycin acts as a mixed noncompetitive inhibitor. The product, AcPhe-puromycin, is derived only from C according to the puromycin reaction. On the other hand, sparsomycin reacts with complex C in a two-step reaction, [REACTION; SEE TEXT] An initial rapid binding of the drug produces the encounter complex CI. During this step and before conversion of CI to C*I, sparsomycin behaves as a competitive inhibitor. The rapidly produced CI is isomerized slowly to a conformationally altered species C*I in which I is bound more tightly. The rate constants of this step are k6 = 2.1 min-1 and k7 = 0.095 min-1. Moreover, the low value of the association rate constant k7/Ki' (2 x 10(5) M-1 sec-1), provides insight into the rates of possible conformational changes occurring during protein synthesis and supports the proposal that sparsomycin is the first example of a slow-binding inhibitor of eukaryotic peptidyltransferase. When complex C is preincubated with concentrations of sparsomycin of >8 Ki and then reacts with a mixture of puromycin and sparsomycin, the inhibition becomes linear mixed noncompetitive and involves C*I instead of CI. During this phase, AcPhe-puromycin is produced from a new, modified ribosomal complex with a lower catalytic rate constant. Thus, sparsomycin also acts as a modifier of eukaryotic peptidyltransferase activity.[1]

References

  1. Kinetics of inhibition of rabbit reticulocyte peptidyltransferase by anisomycin and sparsomycin. Ioannou, M., Coutsogeorgopoulos, C., Synetos, D. Mol. Pharmacol. (1998) [Pubmed]
 
WikiGenes - Universities