The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SPARSOMYCIN     (E)-N-[(2S)-1-hydroxy-3...

Synonyms: CHEMBL38707, NSC-59729, AC1L9KGY, NSC59729, B 120121L19, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SPARSOMYCIN

 

High impact information on SPARSOMYCIN

 

Chemical compound and disease context of SPARSOMYCIN

 

Biological context of SPARSOMYCIN

 

Anatomical context of SPARSOMYCIN

 

Associations of SPARSOMYCIN with other chemical compounds

 

Gene context of SPARSOMYCIN

 

Analytical, diagnostic and therapeutic context of SPARSOMYCIN

  • Direct broth assay for sparsomycin and related nucleoside antitumor antibiotics using reversed-phase high-performance liquid chromatography [24].
  • Sparsomycin (0.1 micrograms/ml, continuous exposure) was active in 11/46 (24%) human tumor xenografts and in 4/5 of the murine tumors, whereas the colony-forming capacity of four human bone-marrows showed no inhibition, suggesting that this dose level may be the relevant in vitro dose [25].
  • In addition to being subject to glomerular filtration, sparsomycin is probably also actively excreted and actively reabsorbed by the renal tubuli [16].
  • In addition to wild-type HIV-1, sparsomycin also accelerated the replication of low-fitness, drug-resistant mutants carrying either D30N or L90M within HIV-1 protease, which are frequently found mutations in HIV-1-infected patients on highly active antiretroviral therapy (HAART) [13].

References

  1. Binding of ribosomes to 5'-terminal leader sequences of eukaryotic messenger RNAs. Filipowicz, W., Haenni, A.L. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  2. Peptidyl-transferase inhibitors have antiviral properties by altering programmed -1 ribosomal frameshifting efficiencies: development of model systems. Dinman, J.D., Ruiz-Echevarria, M.J., Czaplinski, K., Peltz, S.W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  3. Mutations in the peptidyl transferase center of 23 S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation. Tan, G.T., DeBlasio, A., Mankin, A.S. J. Mol. Biol. (1996) [Pubmed]
  4. Characterization of sparsomycin resistance in Streptomyces sparsogenes. Lázaro, E., Sanz, E., Remacha, M., Ballesta, J.P. Antimicrob. Agents Chemother. (2002) [Pubmed]
  5. Lipophilic analogues of sparsomycin as strong inhibitors of protein synthesis and tumor growth: a structure-activity relationship study. van den Broek, L.A., Lázaro, E., Zylicz, Z., Fennis, P.J., Missler, F.A., Lelieveld, P., Garzotto, M., Wagener, D.J., Ballesta, J.P., Ottenheijm, H.C. J. Med. Chem. (1989) [Pubmed]
  6. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes. Porse, B.T., Kirillov, S.V., Awayez, M.J., Ottenheijm, H.C., Garrett, R.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. Methylation-dependent translation of viral messenger RNAs in vitro. Both, G.W., Banerjee, A.K., Shatkin, A.J. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  8. In vitro synthesis, phosphorylation, and localization on 48 S initiation complexes of human protein synthesis initiation factor 4E. Hiremath, L.S., Hiremath, S.T., Rychlik, W., Joshi, S., Domier, L.L., Rhoads, R.E. J. Biol. Chem. (1989) [Pubmed]
  9. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. Hansen, J.L., Moore, P.B., Steitz, T.A. J. Mol. Biol. (2003) [Pubmed]
  10. Kinetics of inhibition of rabbit reticulocyte peptidyltransferase by anisomycin and sparsomycin. Ioannou, M., Coutsogeorgopoulos, C., Synetos, D. Mol. Pharmacol. (1998) [Pubmed]
  11. A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23 S rRNA. Lázaro, E., Rodriguez-Fonseca, C., Porse, B., Ureña, D., Garrett, R.A., Ballesta, J.P. J. Mol. Biol. (1996) [Pubmed]
  12. Hybrids of antibiotics inhibiting protein synthesis. Synthesis and biological activity. Zemlicka, J., Fernandez-Moyano, M.C., Ariatti, M., Zurenko, G.E., Grady, J.E., Ballesta, J.P. J. Med. Chem. (1993) [Pubmed]
  13. Rapid propagation of low-fitness drug-resistant mutants of human immunodeficiency virus type 1 by a streptococcal metabolite sparsomycin. Miyauchi, K., Komano, J., Myint, L., Futahashi, Y., Urano, E., Matsuda, Z., Chiba, T., Miura, H., Sugiura, W., Yamamoto, N. Antivir. Chem. Chemother. (2006) [Pubmed]
  14. Structure-activity relationships of sparsomycin and its analogues. Inhibition of peptide bond formation in cell-free systems and of L1210 and bacterial cell growth. van den Broek, L.A., Liskamp, R.M., Colstee, J.H., Lelieveld, P., Remacha, M., Vázquez, D., Ballesta, J.P., Ottenheijm, H.C. J. Med. Chem. (1987) [Pubmed]
  15. In vivo antitumor activity of sparsomycin and its analogues in eight murine tumor models. Zylicz, Z., Wagener, D.J., van Rennes, H., van der Kleijn, E., Lelieveld, P., van den Broek, L.A., Ottenheijm, H.C. Investigational new drugs. (1988) [Pubmed]
  16. Pharmacokinetics and toxicology of sparsomycin in beagle dogs. Zylicz, Z., Wagener, D.J., Fernandez del Moral, P., van Rennes, H., Wessels, J.M., Winograd, B., van der Kleijn, E., Vree, T.B., van Haelst, U., van den Broek, L.A. Cancer Chemother. Pharmacol. (1987) [Pubmed]
  17. Synthesis and biological evaluation of sparsomycin analogues. Duke, S.S., Boots, M.R. J. Med. Chem. (1983) [Pubmed]
  18. Sparsomycin-induced disaggregation but not detachment of hepatic membrane-bound polyribosomes. Sidransky, H., Verney, E., Murty, C.N., Sarma, D.S. Proc. Soc. Exp. Biol. Med. (1978) [Pubmed]
  19. Biochemical and kinetic characteristics of the interaction of the antitumor antibiotic sparsomycin with prokaryotic and eukaryotic ribosomes. Lazaro, E., van den Broek, L.A., San Felix, A., Ottenheijm, H.C., Ballesta, J.P. Biochemistry (1991) [Pubmed]
  20. Structure-activity relationships of sparsomycin and its analogues. Octylsparsomycin: the first analogue more active than sparsomycin. Liskamp, R.M., Colstee, J.H., Ottenheijm, H.C., Lelieveld, P., Akkerman, W. J. Med. Chem. (1984) [Pubmed]
  21. Ribosomal resistance to the 12,13-epoxytrichothecene antibiotics in the producing organism Myrothecium verrucaria. Hobden, A.N., Cundliffe, E. Biochem. J. (1980) [Pubmed]
  22. Antibiotic sensitivity of ribosomes from wild-type and clindamycin resistant Bacteroides vulgatus strains. Jimenez-Diaz, A., Reig, M., Baquero, F., Ballesta, J.P. J. Antimicrob. Chemother. (1992) [Pubmed]
  23. Inhibition of Trypanosoma brucei brucei peptidyl transferase activity by sparsomycin analogs and effects on trypanosome protein synthesis and proliferation. Bitonti, A.J., Kelly, S.E., Flynn, G.A., McCann, P.P. Biochem. Pharmacol. (1985) [Pubmed]
  24. Direct broth assay for sparsomycin and related nucleoside antitumor antibiotics using reversed-phase high-performance liquid chromatography. Poehland, B.L., Chan, J.A. J. Chromatogr. (1988) [Pubmed]
  25. In vitro and in vivo anticancer activity of mitozolomide and sparsomycin in human tumor xenografts, murine tumors and human bone marrow. Fiebig, H.H., Berger, D.P., Köpping, K., Ottenheijm, H.C., Zylicz, Z. J. Cancer Res. Clin. Oncol. (1990) [Pubmed]
 
WikiGenes - Universities