CEP-1347/KT7515 prevents motor neuronal programmed cell death and injury-induced dedifferentiation in vivo.
CEP-1347, also known as KT7515, a derivative of a natural product indolocarbazole, inhibited motor neuronal death in vitro, inhibited activation of the stress-activated kinase JNK1 (c-jun NH terminal kinase) in cultured spinal motor neurons, but had no effect on the mitogen-activated protein kinase ERK1 in these cells. Results reported here profile the functional activity of CEP-1347/KT7515 in vivo in models of motor neuronal death or dedifferentiation. Application of CEP-1347/KT7515 to the chorioallantoic membrane of embryonic chicks rescued 40% of the lumbar motor neurons that normally die during the developmental period assessed. Peripheral administration of low doses (0.5 and 1 mg/kg daily) of CEP-1347/KT7515 reduced death of motor neurons of the spinal nucleus of the bulbocavernosus in postnatal female rats, with efficacy comparable to testosterone. Strikingly, daily administration of CEP-1347/KT7515 during the 4-day postnatal window of motor neuronal death resulted in persistent long-term motor neuronal survival in adult animals that received no additional CEP-1347/KT7515. In a model of adult motor neuronal dedifferentiation following axotomy, local application of CEP-1347/KT7515 to the transected hypoglossal nerve substantially reduced the loss of choline acetyl transferase immunoreactivity observed 7 days postaxotomy compared to untreated animals. Results from these experiments demonstrate that a small organic molecule that inhibits a signaling pathway associated with stress and injury also reduces neuronal death and degeneration in vivo.[1]References
- CEP-1347/KT7515 prevents motor neuronal programmed cell death and injury-induced dedifferentiation in vivo. Glicksman, M.A., Chiu, A.Y., Dionne, C.A., Harty, M., Kaneko, M., Murakata, C., Oppenheim, R.W., Prevette, D., Sengelaub, D.R., Vaught, J.L., Neff, N.T. J. Neurobiol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg