The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Motor Neurons

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Motor Neurons

 

Psychiatry related information on Motor Neurons

  • We conclude that an RPE motor neuron requires a signal, provided by its interaction with the target organ during a critical period, in order to stop extending axons, stabilize those axons that contact the target, and retract those that do not [6].
  • We hypothesize that UNC-8 channels could modulate coordinated movement in response to body stretch. del-1, a second DEG/ENaC family member coexpressed with unc-8 in a subset of motor neurons, might also participate in a channel that contributes to nematode proprioception [7].
  • In this paper, we also review the EMG and kinematic abnormalities that are present during the execution of single-joint, rapid arm movements in patients with Parkinson's disease, Huntington's disease, Sydenham's chorea, dystonia, athetosis, cerebellar deficits, upper motor neuron syndrome, essential tremor and large-fibre sensory neuropathy [8].
  • METHODS: Postmortem human brain tissue was obtained from different brain regions of patients with ALS, normal controls (NC), and patients with AD and Lewy body dementia (LB)-neurodegenerative diseases in which motor neurons are unaffected [9].
  • For 3 months, a 37-year-old man developed memory loss and personality changes, followed by fever, seizures, bilateral upper motor neuron signs, and increased CSF protein with skin induration that was compatible with scleromyxedema [10].
 

High impact information on Motor Neurons

 

Chemical compound and disease context of Motor Neurons

 

Biological context of Motor Neurons

 

Anatomical context of Motor Neurons

 

Associations of Motor Neurons with chemical compounds

  • By perfusing serotonin onto the synapses made onto one motor neuron, we found that a single axonal branch can undergo long-term branch-specific facilitation [28].
  • The relevant normal motor neurons are preferentially stimulated by androgen, however no motor neuron disorder occurs with any other known AR mutation, including those that cause complete androgen insensitivity [29].
  • Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons [30].
  • Nitric oxide-induced motor neuron disease in a patient with alcoholism [31].
  • The predicted sequence of the protein (alsin) may indicate a mechanism for motor-neuron degeneration, as it may include several cell-signaling motifs with known functions, including three associated with guanine-nucleotide exchange factors for GTPases (GEFs) [32].
 

Gene context of Motor Neurons

 

Analytical, diagnostic and therapeutic context of Motor Neurons

References

  1. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Cartegni, L., Krainer, A.R. Nat. Genet. (2002) [Pubmed]
  2. A mouse model for spinal muscular atrophy. Hsieh-Li, H.M., Chang, J.G., Jong, Y.J., Wu, M.H., Wang, N.M., Tsai, C.H., Li, H. Nat. Genet. (2000) [Pubmed]
  3. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Estévez, A.G., Crow, J.P., Sampson, J.B., Reiter, C., Zhuang, Y., Richardson, G.J., Tarpey, M.M., Barbeito, L., Beckman, J.S. Science (1999) [Pubmed]
  4. Gene therapy for ALS delivers. Boillée, S., Cleveland, D.W. Trends Neurosci. (2004) [Pubmed]
  5. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Williamson, T.L., Cleveland, D.W. Nat. Neurosci. (1999) [Pubmed]
  6. Modulation of the pattern of axonal projections of a leech motor neuron by ablation or transplantation of its target. Baptista, C.A., Macagno, E.R. Neuron (1988) [Pubmed]
  7. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Tavernarakis, N., Shreffler, W., Wang, S., Driscoll, M. Neuron (1997) [Pubmed]
  8. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Berardelli, A., Hallett, M., Rothwell, J.C., Agostino, R., Manfredi, M., Thompson, P.D., Marsden, C.D. Brain (1996) [Pubmed]
  9. Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Honig, L.S., Chambliss, D.D., Bigio, E.H., Carroll, S.L., Elliott, J.L. Neurology (2000) [Pubmed]
  10. Monoclonal paraproteinemia with subacute encephalopathy, seizures, and scleromyxedema. Reid, T.L., Spoto, D.V., Larrabee, G.J., Shlamowitz, M.A., Horowitz, S.A. Neurology (1987) [Pubmed]
  11. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Jordanova, A., Irobi, J., Thomas, F.P., Van Dijck, P., Meerschaert, K., Dewil, M., Dierick, I., Jacobs, A., De Vriendt, E., Guergueltcheva, V., Rao, C.V., Tournev, I., Gondim, F.A., D'Hooghe, M., Van Gerwen, V., Callaerts, P., Van Den Bosch, L., Timmermans, J.P., Robberecht, W., Gettemans, J., Thevelein, J.M., De Jonghe, P., Kremensky, I., Timmerman, V. Nat. Genet. (2006) [Pubmed]
  12. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Patel, S.D., Ciatto, C., Chen, C.P., Bahna, F., Rajebhosale, M., Arkus, N., Schieren, I., Jessell, T.M., Honig, B., Price, S.R., Shapiro, L. Cell (2006) [Pubmed]
  13. Mutant dynactin in motor neuron disease. Puls, I., Jonnakuty, C., LaMonte, B.H., Holzbaur, E.L., Tokito, M., Mann, E., Floeter, M.K., Bidus, K., Drayna, D., Oh, S.J., Brown, R.H., Ludlow, C.L., Fischbeck, K.H. Nat. Genet. (2003) [Pubmed]
  14. LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Thaler, J.P., Lee, S.K., Jurata, L.W., Gill, G.N., Pfaff, S.L. Cell (2002) [Pubmed]
  15. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., Rowitch, D.H. Cell (2002) [Pubmed]
  16. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Rothstein, J.D., Bristol, L.A., Hosler, B., Brown, R.H., Kuncl, R.W. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  17. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Katsuno, M., Sang, C., Adachi, H., Minamiyama, M., Waza, M., Tanaka, F., Doyu, M., Sobue, G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  18. Serotonin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia. Fitzgerald, K., Carew, T.J. J. Neurosci. (1991) [Pubmed]
  19. Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. Roy, J., Minotti, S., Dong, L., Figlewicz, D.A., Durham, H.D. J. Neurosci. (1998) [Pubmed]
  20. Amyotrophic lateral sclerosis: alterations in neurotransmitter receptors. Whitehouse, P.J., Wamsley, J.K., Zarbin, M.A., Price, D.L., Tourtellotte, W.W., Kuhar, M.J. Ann. Neurol. (1983) [Pubmed]
  21. Specification of motor neuron identity by the MNR2 homeodomain protein. Tanabe, Y., William, C., Jessell, T.M. Cell (1998) [Pubmed]
  22. A frame-shift deletion in the survival motor neuron gene in Spanish spinal muscular atrophy patients. Bussaglia, E., Clermont, O., Tizzano, E., Lefebvre, S., Bürglen, L., Cruaud, C., Urtizberea, J.A., Colomer, J., Munnich, A., Baiget, M. Nat. Genet. (1995) [Pubmed]
  23. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Oppenheim, R.W., Houenou, L.J., Johnson, J.E., Lin, L.F., Li, L., Lo, A.C., Newsome, A.L., Prevette, D.M., Wang, S. Nature (1995) [Pubmed]
  24. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Pfaff, S.L., Mendelsohn, M., Stewart, C.L., Edlund, T., Jessell, T.M. Cell (1996) [Pubmed]
  25. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Jones, K.R., Fariñas, I., Backus, C., Reichardt, L.F. Cell (1994) [Pubmed]
  26. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Roelink, H., Porter, J.A., Chiang, C., Tanabe, Y., Chang, D.T., Beachy, P.A., Jessell, T.M. Cell (1995) [Pubmed]
  27. Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Desai, C.J., Gindhart, J.G., Goldstein, L.S., Zinn, K. Cell (1996) [Pubmed]
  28. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Martin, K.C., Casadio, A., Zhu, H., Yaping, E., Rose, J.C., Chen, M., Bailey, C.H., Kandel, E.R. Cell (1997) [Pubmed]
  29. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Mhatre, A.N., Trifiro, M.A., Kaufman, M., Kazemi-Esfarjani, P., Figlewicz, D., Rouleau, G., Pinsky, L. Nat. Genet. (1993) [Pubmed]
  30. Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Sockanathan, S., Jessell, T.M. Cell (1998) [Pubmed]
  31. Nitric oxide-induced motor neuron disease in a patient with alcoholism. Tsai, G.E., Gastfriend, D.R. N. Engl. J. Med. (1995) [Pubmed]
  32. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Yang, Y., Hentati, A., Deng, H.X., Dabbagh, O., Sasaki, T., Hirano, M., Hung, W.Y., Ouahchi, K., Yan, J., Azim, A.C., Cole, N., Gascon, G., Yagmour, A., Ben-Hamida, M., Pericak-Vance, M., Hentati, F., Siddique, T. Nat. Genet. (2001) [Pubmed]
  33. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. DeChiara, T.M., Vejsada, R., Poueymirou, W.T., Acheson, A., Suri, C., Conover, J.C., Friedman, B., McClain, J., Pan, L., Stahl, N., Ip, N.Y., Yancopoulos, G.D. Cell (1995) [Pubmed]
  34. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., Van Dorpe, J., Hellings, P., Gorselink, M., Heymans, S., Theilmeier, G., Dewerchin, M., Laudenbach, V., Vermylen, P., Raat, H., Acker, T., Vleminckx, V., Van Den Bosch, L., Cashman, N., Fujisawa, H., Drost, M.R., Sciot, R., Bruyninckx, F., Hicklin, D.J., Ince, C., Gressens, P., Lupu, F., Plate, K.H., Robberecht, W., Herbert, J.M., Collen, D., Carmeliet, P. Nat. Genet. (2001) [Pubmed]
  35. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Sharma, K., Sheng, H.Z., Lettieri, K., Li, H., Karavanov, A., Potter, S., Westphal, H., Pfaff, S.L. Cell (1998) [Pubmed]
  36. A missense mutation in Tbce causes progressive motor neuronopathy in mice. Martin, N., Jaubert, J., Gounon, P., Salido, E., Haase, G., Szatanik, M., Guénet, J.L. Nat. Genet. (2002) [Pubmed]
  37. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Sendtner, M., Kreutzberg, G.W., Thoenen, H. Nature (1990) [Pubmed]
  38. Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Gravel, C., Götz, R., Lorrain, A., Sendtner, M. Nat. Med. (1997) [Pubmed]
  39. Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Koliatsos, V.E., Clatterbuck, R.E., Winslow, J.W., Cayouette, M.H., Price, D.L. Neuron (1993) [Pubmed]
  40. Defective kinesin heavy chain behavior in mouse kinesin light chain mutants. Rahman, A., Kamal, A., Roberts, E.A., Goldstein, L.S. J. Cell Biol. (1999) [Pubmed]
  41. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Pardo, C.A., Xu, Z., Borchelt, D.R., Price, D.L., Sisodia, S.S., Cleveland, D.W. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities