The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles.

In skeletal muscles, increased utilization of lipids and carbohydrates accompanied with increased energy expenditure has been observed during and after exercise. UCP3, mitochondrial uncoupling protein, is expressed in skeletal muscles. We investigated UCP3 mRNA levels in exercise training mice which increased energy expenditure and in sciatic nerve-denervated mice which decreased energy expenditure. Mice exercised by 2 wk swimming had 14- to 18-fold increases of UCP3 mRNA in skeletal muscles 3 h after the last swimming, but no increases of UCP1 mRNA in BAT and of UCP2 mRNA in WAT. However, 22 h after exercise, UCP3 mRNA increases observed in skeletal muscles 3 h after exercise returned to sedentary levels. Similar transient increases of UCP3 mRNA were observed in 1 wk treadmill running training or a single exercise bout. In denerved gastrocnemius, GLUT4 and UCP3 mRNA decreased by 58 and 45%, respectively. These data indicate that UCP3 may have a role for fine adjustments of energy expenditure and that up-regulation of UCP3 mRNA may be a defense mechanism against extra energy supply to consume extra energy in skeletal muscles.[1]

References

  1. Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. Tsuboyama-Kasaoka, N., Tsunoda, N., Maruyama, K., Takahashi, M., Kim, H., Ikemoto, S., Ezaki, O. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
 
WikiGenes - Universities