The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Energy-Generating Resources

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Energy-Generating Resources

 

High impact information on Energy-Generating Resources

  • We suggest that the redox state of the quinones, which controls autophosphorylation of ArcB, not only monitors oxygen but also energy supply, and we show that the ArcB/ArcA/RssB system is involved in sigma(S) induction during entry into starvation conditions [6].
  • Moreover, S100A1 gene transfer decreased elevated intracellular Na+ concentrations to levels detected in nonfailing cardiomyocytes, reversed reactivated fetal gene expression, and restored energy supply in failing cardiomyocytes [7].
  • Every 1-3 months, families in the intervention group received dietary advice aimed at adequate energy supply, with low fat intake (30-35% energy, polyunsaturated/monounsaturated/saturated fatty acid ratio 1/1/1, and cholesterol intake < 200 mg daily) [8].
  • The novel regulation of AMPK described here provides a mechanism by which energy supply can meet energy demand following the utilization of the immediate energy reserve provided by the creatine kinase-phosphocreatine system [9].
  • The exocytotic release of peroxidase is dependent on energy supply, as indicated by substantial inhibition (at 37 degrees C) under anoxic conditions or in the presence of dinitrophenol, KCN, or carboxyatractyloside [10].
 

Chemical compound and disease context of Energy-Generating Resources

 

Biological context of Energy-Generating Resources

 

Anatomical context of Energy-Generating Resources

 

Associations of Energy-Generating Resources with chemical compounds

  • The rate of adenosine production is enhanced when the energy demand is larger than the rate of energy supply [24].
  • They suggest that the oxidation of glutamine supplies energy for tubular transport and basal demands such as synthesis of hormones and maintenance of structure, whereas the oxidation of lactate supplies energy mainly for transport activities [25].
  • In many organisms, metabolite interconversion at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node involves a structurally entangled set of reactions that interconnects the major pathways of carbon metabolism and thus, is responsible for the distribution of the carbon flux among catabolism, anabolism and energy supply of the cell [26].
  • As a result, glutamate removal from synaptic domains and lactate secretion serving the energy supply to neurons would be facilitated and could operate with greater capacity [27].
  • Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs [28].
 

Gene context of Energy-Generating Resources

  • In UV-irradiated JG-1 (rad1-1), rad3 and rad11 as well as in DEB-inactivated rad7, rad11, rad19 and rad20 the inability of LHR is a constitutive phenomenon and cannot be overcome by exogenous energy supply [29].
  • The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis [30].
  • Other organs also release IL-6 during exercise; however, muscle-derived IL-6 seems to play an important role in signalling between the muscles and other organs in order to maintain energy supply [31].
  • The expression of MCT2 in synaptic membranes may allow energy supply to be tuned to the excitatory drive [32].
  • These data indicate that UCP3 may have a role for fine adjustments of energy expenditure and that up-regulation of UCP3 mRNA may be a defense mechanism against extra energy supply to consume extra energy in skeletal muscles [33].
 

Analytical, diagnostic and therapeutic context of Energy-Generating Resources

References

  1. Proton magnetic resonance spectroscopic imaging for discrimination of absence and complex partial seizures. Cendes, F., Stanley, J.A., Dubeau, F., Andermann, F., Arnold, D.L. Ann. Neurol. (1997) [Pubmed]
  2. Nucleotide, nucleoside and purine base concentrations in human placentae. Simmonds, R.J., Coade, S.B., Harkness, R.A., Drury, L., Hytten, F.E. Placenta (1982) [Pubmed]
  3. The effect of anthralin (dithranol) on mitochondria. Morlière, P., Dubertret, L., Sa e Melo, T., Salet, C., Fosse, M., Santus, R. Br. J. Dermatol. (1985) [Pubmed]
  4. Metabolic adaptation to prolonged exercise in severely obese subjects. Scheen, A.J., Pirnay, F., Luyckx, A.S., Lefebvre, P.J. International journal of obesity. (1983) [Pubmed]
  5. Cardioprotective effects of defibrotide in acute myocardial ischemia in the cat. Niada, R., Porta, R., Pescador, R., Mantovani, M., Prino, G. Thromb. Res. (1985) [Pubmed]
  6. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Mika, F., Hengge, R. Genes Dev. (2005) [Pubmed]
  7. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. Most, P., Pleger, S.T., Völkers, M., Heidt, B., Boerries, M., Weichenhan, D., Löffler, E., Janssen, P.M., Eckhart, A.D., Martini, J., Williams, M.L., Katus, H.A., Remppis, A., Koch, W.J. J. Clin. Invest. (2004) [Pubmed]
  8. Prospective randomised trial in 1062 infants of diet low in saturated fat and cholesterol. Lapinleimu, H., Viikari, J., Jokinen, E., Salo, P., Routi, T., Leino, A., Rönnemaa, T., Seppänen, R., Välimäki, I., Simell, O. Lancet (1995) [Pubmed]
  9. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. Ponticos, M., Lu, Q.L., Morgan, J.E., Hardie, D.G., Partridge, T.A., Carling, D. EMBO J. (1998) [Pubmed]
  10. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. Herzog, V., Sies, H., Miller, F. J. Cell Biol. (1976) [Pubmed]
  11. Studies on the tolerance of medium chain triglycerides in dogs. Grancher, D., Jean-Blain, C., Frey, A., Schirardin, H., Bach, A.C. JPEN. Journal of parenteral and enteral nutrition. (1987) [Pubmed]
  12. Left ventricular myocardial blood flow, metabolism, and effects of treatment with enalapril: further insights into the mechanisms of canine experimental pacing-induced heart failure. Moe, G.W., Montgomery, C., Howard, R.J., Grima, E.A., Armstrong, P.W. J. Lab. Clin. Med. (1993) [Pubmed]
  13. Alterations of gluconeogenesis by ischemic renal injury in rats. Kondou, I., Nakada, J., Hishinuma, H., Masuda, F., Machida, T., Endou, H. Renal failure. (1992) [Pubmed]
  14. Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. Cater, H.L., Benham, C.D., Sundstrom, L.E. J. Physiol. (Lond.) (2001) [Pubmed]
  15. The toxicological relevance of paracetamol-induced inhibition of hepatic respiration and ATP depletion. Strubelt, O., Younes, M. Biochem. Pharmacol. (1992) [Pubmed]
  16. Stimulation of mitochondrial gene expression and proliferation of mitochondria following impairment of cellular energy transfer by inhibition of the phosphocreatine circuit in rat hearts. Wiesner, R.J., Hornung, T.V., Garman, J.D., Clayton, D.A., O'Gorman, E., Wallimann, T. J. Bioenerg. Biomembr. (1999) [Pubmed]
  17. Nitric oxide reduces energy supply by direct action on the respiratory chain in isolated cardiomyocytes. Stumpe, T., Decking, U.K., Schrader, J. Am. J. Physiol. Heart Circ. Physiol. (2001) [Pubmed]
  18. Decrease of glutaminase expression by interferon-gamma in human intestinal epithelial cells. Sarantos, P., Abouhamze, Z., Copeland, E.M., Souba, W.W. Ann. Surg. Oncol. (1994) [Pubmed]
  19. Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies? Spencer, P.S., Sabri, M.I., Schaumburg, H.H., Moore, C.L. Ann. Neurol. (1979) [Pubmed]
  20. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. Browne, G.J., Finn, S.G., Proud, C.G. J. Biol. Chem. (2004) [Pubmed]
  21. Cultured rat hepatocytes adapt their cellular glycolytic activity and adenylate energy status to tissue oxygen tension: influences of extracellular matrix components, insulin and glucagon. Ohno, K., Maier, P. J. Cell. Physiol. (1994) [Pubmed]
  22. Temperature-induced greening of Chlorella vulgaris. The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching. Wilson, K.E., Król, M., Huner, N.P. Planta (2003) [Pubmed]
  23. A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Allaman, I., Lengacher, S., Magistretti, P.J., Pellerin, L. Am. J. Physiol., Cell Physiol. (2003) [Pubmed]
  24. Neuroprotective role of adenosine in cerebral ischaemia. Rudolphi, K.A., Schubert, P., Parkinson, F.E., Fredholm, B.B. Trends Pharmacol. Sci. (1992) [Pubmed]
  25. Renal CO2 production from glutamine and lactate as a function of arterial perfusion pressure in dog. Baruch, S.B., Eun, C.K., MacLeod, M., Pitts, R.F. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  26. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. Sauer, U., Eikmanns, B.J. FEMS Microbiol. Rev. (2005) [Pubmed]
  27. Glial strategy for metabolic shuttling and neuronal function. Deitmer, J.W. Bioessays (2000) [Pubmed]
  28. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Foretz, M., Ancellin, N., Andreelli, F., Saintillan, Y., Grondin, P., Kahn, A., Thorens, B., Vaulont, S., Viollet, B. Diabetes (2005) [Pubmed]
  29. Energy requirement for liquid holding recovery from UV- and DEB-induced damage in rad mutants of Saccharomyces cerevisiae. Zaborowska, D., Swietlińska, Z., Haładus, E., Zuk, J. Acta Microbiol. Pol. (1980) [Pubmed]
  30. Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase. Guo, K., Lukacik, P., Papagrigoriou, E., Meier, M., Lee, W.H., Adamski, J., Oppermann, U. J. Biol. Chem. (2006) [Pubmed]
  31. The role of IL-6 in exercise-induced immune changes and metabolism. Steensberg, A. Exercise immunology review. (2003) [Pubmed]
  32. A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Bergersen, L., Waerhaug, O., Helm, J., Thomas, M., Laake, P., Davies, A.J., Wilson, M.C., Halestrap, A.P., Ottersen, O.P. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (2001) [Pubmed]
  33. Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. Tsuboyama-Kasaoka, N., Tsunoda, N., Maruyama, K., Takahashi, M., Kim, H., Ikemoto, S., Ezaki, O. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  34. The effect of reduction of perfusion rate on lactate and oxygen uptake, glucose output and energy supply in the isolated perfused liver of starved rats. Iles, R.A., Baron, P.G., Cohen, R.D. Biochem. J. (1979) [Pubmed]
  35. Epidural ropivacaine versus epidural morphine and the catabolic response to colonic surgery: stable isotope kinetic studies in the fasted state and during infusion of glucose. Schricker, T., Wykes, L., Eberhart, L., Lattermann, R., Carli, F. Anesthesiology (2004) [Pubmed]
  36. Reduction of myocardial myoglobin in bovine dilated cardiomyopathy. Weil, J., Eschenhagen, T., Magnussen, O., Mittmann, C., Orthey, E., Scholz, H., Schäfer, H., Scholtysik, G. J. Mol. Cell. Cardiol. (1997) [Pubmed]
  37. Breath-by-breath measurements for the analysis of exogenous glucose oxidation during intense endurance exercise using [13C]-isotopes. Röcker, K., Krieg, B., Niess, A., Dickhuth, H.H. International journal of sports medicine. (1996) [Pubmed]
  38. Acute hyperammonaemic encephalopathy in a female newborn caused by a novel, de novo mutation in the ornithine transcarbamylase gene. Valik, D., Sedova, Z., Starha, J., Zeman, J., Hruba, E., Dvorakova, L. Acta Paediatr. (2004) [Pubmed]
 
WikiGenes - Universities