The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Biochemical characterization of the NF-Y transcription factor complex during B lymphocyte development.

The transcription factor, NF-Y, plays a critical role in tissue-specific major histocompatibility complex class II gene transcription. In this report the biochemical properties of the heterotrimeric NF-Y complex have been characterized during stage-specific B-cell development, and in several class II- mutant B-cell lines, which represent distinct bare lymphocyte syndrome class II genetic complementation groups. The NF-Y complex derived from class II+ mature B-cells bound with high affinity to anion exchangers, and eluted as an intact trimeric complex, whereas, NF-Y derived from class II- plasma B-cells, and from bare lymphocyte syndrome group II cell lines, RJ2.2.5 and RM3, dissociated into discrete NF-YA and NF-YB:C subunit fractions. Recombination of the MPC11 plasma B-cell derived NF-Y A:B:C complex with the low molecular mass protein fraction, NF-Y-associated factors (YAFs), derived from mature A20 B-cell nuclei, conferred high affinity anion exchange binding to NF-Y as an intact trimeric complex. Recombination of the native NF-YA:B:C complex with the transcriptional cofactor, PC4, likewise conferred high affinity NF-Y binding to anion exchangers, and stabilized NF-Y interaction with CCAAT-box DNA motifs in vitro. Interaction between PC4 and NF-Y was mapped to the C-terminal region of PC4, and the subunit interaction subdomain of the highly conserved DNA binding-subunit interaction domain (DBD) of NF-YA. These results suggest that in class II+ mature B-cells NF-Y is associated with the protein cofactor, PC4, which may play an important role in NF-Y-mediated transcriptional control of class II genes.[1]

References

 
WikiGenes - Universities