The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

4-Aminobutyrate (GABA) transporters from the amine-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis.

A previous study [Ferson, Wray and Fisher (1996) Mol. Microbiol. 22, 693-701] has shown that transposon-mediated disruption of a protein 47% identical to the Escherichia coli GABA (4-aminobutyrate) transporter abolishes the ability of nitrogen-limited culture conditions to induce expression of a GABA transport activity in Bacillus subtilis. Here it is demonstrated directly that the B. subtilis GABA permease (gabP) gene can complement the transport defect in the gabP-negative E. coli strain. Unexpectedly, the ligand-recognition profile of the B. subtilis GabP was found to differ substantially from that of the highly homologous E. coli GabP. Unlike the E. coli GabP, the B. subtilis GabP: (i) exhibits approx. equal preference for the 3-carbon (beta-alanine, Km=9.6 microM) and the 4-carbon (GABA, Km=37 microM) amino acids, and (ii) resists inhibition by bulky, conformationally constrained compounds (e.g. nipecotic acid, guvacine), which are active against GABA transporters from brain. The present study shows additionally that the B. subtilis GabP can translocate several open-chain GABA analogues (3-aminobutyrate, 3-aminopropanoate, cis-4-aminobutenoate) across the membrane via counterflow against [3H]GABA. Thus, consistent with the idea that the ligand-recognition domain of the B. subtilis GabP is less spacious than that of the close homologue from E. coli, the former exhibits more stringent requirements than the latter for substrate recognition and translocation. These distinct functional characteristics of the E. coli and B. subtilis GABA transporters provide a basis by which to identify ligand-recognition domains within the amine-polyamine-choline transporter superfamily.[1]


WikiGenes - Universities