The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

beta-alanine     3-aminopropanoic acid

Synonyms: Abufene, BALA, beta-Ala, B-ALANINE, ss-Ala, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of beta-alanine

 

High impact information on beta-alanine

  • Whereas wild-type alpha 1 channels expressed in Xenopus oocytes required 0.7 millimolar beta-alanine for a half-maximal response, the doubly mutated (F159Y,Y161F) alpha 1 subunit had an affinity for beta-alanine (which was more potent than glycine) that was 110-fold that of the wild type [6].
  • A conjugate containing a beta-alanine residue at the C terminus of the polyamide moiety showed no nuclear localization, whereas an analogous compound lacking the beta-alanine residue was strongly localized in the nuclei of all cell lines tested [7].
  • However, the calculated isoelectric point of the taurine/beta-alanine transporter is more acidic (pI = 5.98) than those (pI > 8.0) of other cloned neurotransmitter transporters [8].
  • At this survival time, 61% of the radioactivity in the olfactory epithelium was present in the carnosine fraction, while 37% of the label remained in the beta-alanine fraction [9].
  • From these results, we concluded that TGR7 functioned as a specific membrane receptor for beta-alanine [10].
 

Chemical compound and disease context of beta-alanine

 

Biological context of beta-alanine

  • These results indicate that harmaline does not compete with sodium for a binding site on the carrier as has been suggested for other sodium-coupled transport systems, and that instead, chloride may be required for harmaline binding to the beta-alanine transporter [16].
  • In this report, a combination of beta-alanine scanning mutagenesis and kinetic measurements was used to probe, in a quantitative, systematic, and simultaneous fashion, the relative contribution of the amino acid side chain and backbone functionalities to the overall calpain-inhibitory activity of B27-WT [17].
  • Recent studies in a variety of transport systems, including rat renal brush border membrane vesicles, indicate that halide anions chloride (Cl-) and bromide (Br-) are essential for glycine, beta-alanine, gamma-aminobutyric acid, and taurine uptake, so the possibility that Na(+)-proline symport is Cl- dependent was explored [18].
  • An LLC-PK1 cell line stably expressing GABA transporter type 3 (GAT-3), a beta-alanine-sensitive neuronal GABA transporter, has been generated and used to examine the kinetics, ion dependence, and pharmacological properties of the transporter [19].
  • The biosynthesis begins with the decarboxylation of aspartate to give beta-alanine [20].
 

Anatomical context of beta-alanine

 

Associations of beta-alanine with other chemical compounds

 

Gene context of beta-alanine

 

Analytical, diagnostic and therapeutic context of beta-alanine

  • Crude venom was fractionated by anion exchange and gel filtration in four steps. beta-Alanine acetate disk gel electrophoresis was used to demonstrate electrophoretic homogeneity [30].
  • However, the isomeric pairs could be resolved by reversed-phase high performance liquid chromatography, with the reverse amides having greater retention times compared to the beta-alanine conjugates [31].
  • Growth of SJ16/pKAS4 on [3H]-beta-alanine followed by Coomassie staining of the protein and autoradiography revealed that PHA synthase is overexpressed and that beta-alanine is incorporated into the protein [32].
  • The reverse amide analogs comigrated with their isomeric beta-alanine conjugates during thin-layer chromatography using a variety of solvent systems [31].
  • Two synthetic analogues of distamycin (Dst), PPA and PAP, containing a saturated beta-alanine moiety substituting for an N-methylpyrrole chromophore were studied for their interactions with the double-stranded alternating copolymer poly(dA-dT).poly(dA-dt) [abbreviated as poly(dA-dT)], with UV absorption and circular dichroism (CD) spectroscopy [33].

References

  1. Beta-aminoaciduria in patients with Burkitt's lymphoma. Waalkes, T.P., Gehrke, C.W., Lakings, D.B., Zumwalt, R.W., Kuo, K.C., Jacobs, S.A., Borek, E. J. Natl. Cancer Inst. (1976) [Pubmed]
  2. Purification and properties of L-Aspartate-alpha-decarboxylase, an enzyme that catalyzes the formation of beta-alanine in Escherichia coli. Williamson, J.M., Brown, G.M. J. Biol. Chem. (1979) [Pubmed]
  3. Streptomyces beta-alanine:alpha-ketoglutarate aminotransferase, a novel omega-amino acid transaminase. Purification, crystallization, and enzymologic properties. Yonaha, K., Suzuki, K., Toyama, S. J. Biol. Chem. (1985) [Pubmed]
  4. Taurine amplifies renal kallikrein and prevents salt-induced hypertension in Dahl rats. Ideishi, M., Miura, S., Sakai, T., Sasaguri, M., Misumi, Y., Arakawa, K. J. Hypertens. (1994) [Pubmed]
  5. Positional isotope exchange analysis of the pantothenate synthetase reaction. Williams, L., Zheng, R., Blanchard, J.S., Raushel, F.M. Biochemistry (2003) [Pubmed]
  6. Mutation of glycine receptor subunit creates beta-alanine receptor responsive to GABA. Schmieden, V., Kuhse, J., Betz, H. Science (1993) [Pubmed]
  7. Nuclear localization of pyrrole-imidazole polyamide-fluorescein conjugates in cell culture. Best, T.P., Edelson, B.S., Nickols, N.G., Dervan, P.B. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  8. Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Liu, Q.R., López-Corcuera, B., Nelson, H., Mandiyan, S., Nelson, N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  9. Carnosine in primary afferents of the olfactory system: an autoradiographic and biochemical study. Burd, G.D., Davis, B.J., Macrides, F., Grillo, M., Margolis, F.L. J. Neurosci. (1982) [Pubmed]
  10. Identification of a G protein-coupled receptor specifically responsive to beta-alanine. Shinohara, T., Harada, M., Ogi, K., Maruyama, M., Fujii, R., Tanaka, H., Fukusumi, S., Komatsu, H., Hosoya, M., Noguchi, Y., Watanabe, T., Moriya, T., Itoh, Y., Hinuma, S. J. Biol. Chem. (2004) [Pubmed]
  11. Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. Hoffman, T.J., Gali, H., Smith, C.J., Sieckman, G.L., Hayes, D.L., Owen, N.K., Volkert, W.A. J. Nucl. Med. (2003) [Pubmed]
  12. beta-Alanine protects against taurine and NaCl--induced hypernatremia in the rat. McBroom, M.J., Davidson, N. Proc. Soc. Exp. Biol. Med. (1996) [Pubmed]
  13. Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: dose-response in mice infected with Escherichia coli. Tilley, L.D., Mellbye, B.L., Puckett, S.E., Iversen, P.L., Geller, B.L. J. Antimicrob. Chemother. (2007) [Pubmed]
  14. Chemometric models for toxicity classification based on NMR spectra of biofluids. Holmes, E., Nicholls, A.W., Lindon, J.C., Connor, S.C., Connelly, J.C., Haselden, J.N., Damment, S.J., Spraul, M., Neidig, P., Nicholson, J.K. Chem. Res. Toxicol. (2000) [Pubmed]
  15. Consequences of reduced intracellular coenzyme A content in Escherichia coli. Jackowski, S., Rock, C.O. J. Bacteriol. (1986) [Pubmed]
  16. beta-Amino acid transport across the renal brush-border membrane is coupled to both Na and Cl. Turner, R.J. J. Biol. Chem. (1986) [Pubmed]
  17. Structural determinants of the calpain inhibitory activity of calpastatin peptide B27-WT. Betts, R., Weinsheimer, S., Blouse, G.E., Anagli, J. J. Biol. Chem. (2003) [Pubmed]
  18. Chloride and membrane potential dependence of sodium ion-proline symport. Chesney, R.W., Zelikovic, I., Budreau, A., Randle, D. J. Am. Soc. Nephrol. (1991) [Pubmed]
  19. Stable expression of a neuronal gamma-aminobutyric acid transporter, GAT-3, in mammalian cells demonstrates unique pharmacological properties and ion dependence. Clark, J.A., Amara, S.G. Mol. Pharmacol. (1994) [Pubmed]
  20. The biosynthesis of coenzyme A in bacteria. Begley, T.P., Kinsland, C., Strauss, E. Vitam. Horm. (2001) [Pubmed]
  21. Na(+)-independent, H(+)-coupled transepithelial beta-alanine absorption by human intestinal Caco-2 cell monolayers. Thwaites, D.T., McEwan, G.T., Brown, C.D., Hirst, B.H., Simmons, N.L. J. Biol. Chem. (1993) [Pubmed]
  22. Pyridoxine-responsive hyper-beta-alaninemia associated with Cohen's syndrome. Higgins, J.J., Kaneski, C.R., Bernardini, I., Brady, R.O., Barton, N.W. Neurology (1994) [Pubmed]
  23. Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and beta-alanine carriers in both cell types. Larsson, O.M., Griffiths, R., Allen, I.C., Schousboe, A. J. Neurochem. (1986) [Pubmed]
  24. Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. White, W.H., Gunyuzlu, P.L., Toyn, J.H. J. Biol. Chem. (2001) [Pubmed]
  25. Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. Lopez-Corcuera, B., Liu, Q.R., Mandiyan, S., Nelson, H., Nelson, N. J. Biol. Chem. (1992) [Pubmed]
  26. Plant C-N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. Piotrowski, M., Janowitz, T., Kneifel, H. J. Biol. Chem. (2003) [Pubmed]
  27. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter. Stolz, J., Sauer, N. J. Biol. Chem. (1999) [Pubmed]
  28. Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. Liu, Q.R., López-Corcuera, B., Mandiyan, S., Nelson, H., Nelson, N. J. Biol. Chem. (1993) [Pubmed]
  29. Indirect regulation of the intestinal H+-coupled amino acid transporter hPAT1 (SLC36A1). Anderson, C.M., Thwaites, D.T. J. Cell. Physiol. (2005) [Pubmed]
  30. Hemorrhagic toxins from rattlesnake (Crotalus atrox) venom. Pathogenesis of hemorrhage induced by three purified toxins. Ownby, C.L., Bjarnason, J., Tu, A.T. Am. J. Pathol. (1978) [Pubmed]
  31. Synthesis and characterization of novel analogs of conjugated bile acids containing reversed amide bonds. Coleman, J.P., Kirby, L.C., Klein, R.A. J. Lipid Res. (1995) [Pubmed]
  32. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Gerngross, T.U., Snell, K.D., Peoples, O.P., Sinskey, A.J., Csuhai, E., Masamune, S., Stubbe, J. Biochemistry (1994) [Pubmed]
  33. Interaction of synthetic analogues of distamycin with poly(dA-dT): role of the conjugated N-methylpyrrole system. Dasgupta, D., Parrack, P., Sasisekharan, V. Biochemistry (1987) [Pubmed]
 
WikiGenes - Universities