The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor.

Activation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphorylation-dependent targeting of CaMKII. CaMKII and NMDA receptors colocalize in neuronal dendritic spines, and a CaMKII.NMDA receptor complex can be isolated from brain extracts. Autophosphorylation induces direct high-affinity binding of CaMKII to a 50 amino acid domain in the NR2B cytoplasmic tail; little or no binding is observed to NR2A and NR1 cytoplasmic tails. Specific colocalization of CaMKII with NR2B-containing NMDA receptors in transfected cells depends on receptor activation, Ca2+ influx, and Thr286 autophosphorylation. Translocation of CaMKII because of interaction with the NMDA receptor Ca2+ channel may potentiate kinase activity and provide exquisite spatial and temporal control of postsynaptic substrate phosphorylation.[1]

References

 
WikiGenes - Universities