The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A hairpin conformation for the 3' overhang of Oxytricha nova telomeric DNA.

The solution secondary structure of the Oxytricha nova telomeric 3' overhang, d(T4G4)2, has been investigated by Raman spectroscopy, hydrogen-deuterium exchange kinetics and gel electrophoresis. The electrophoretic mobility of d(T4G4)2 in non-denaturing gels indicates a highly compact conformation, consistent with a hairpin secondary structure. Raman markers show that the d(T4G4)2 hairpin contains equal numbers of C2'-endo/syn and C2'-endo/anti deoxyguanosine conformers, as well as G.G base-pairs of the Hoogsteen type. The hydrogen-deuterium exchange kinetics of d(T4G4)2, monitored by time-resolved Raman spectroscopy, reveal two kinetically distinct classes of guanine imino (N1H) protons. The more slowly exchanging fraction (kN1H(1)=4.6x10(-3) min-1), which represents 50% of N1H groups, is attributed to Hoogsteen-paired residues. The more rapidly exchanging fraction (kN1H(2)>/=0.3 min-1) is attributable to solvent-exposed residues. Raman dynamic probe of the kinetics of guanine C8H-->C8(2)H exchange in d(T4G4)2 reveals modest retardation vis-à-vis dGMP, which rules out quadruplex formation by the telomeric repeat and confirms an ordered secondary structure consistent with a Hoogsteen-paired hairpin. Similar Raman, hydrogen-isotope exchange and electrophoretic mobility experiments on the related telomeric model, dT6(T4G4)2, also reveal a hairpin stabilized by Hoogsteen G.G pairs. Presence of the 5' thymidine tail preceding the Oxytricha telomeric repeat has no apparent effect on the hairpin secondary structure. We propose a molecular model for the hairpin conformation of the Oxytricha nova telomeric repeat and consider its possible roles in mechanisms of telomeric DNA interaction in vitro and telomere function in vivo.[1]

References

 
WikiGenes - Universities