Retinoids potentiate transforming growth factor-beta activity in bovine endothelial cells through up-regulating the expression of transforming growth factor-beta receptors.
Retinoic acid (RA) induces the activation of latent transforming growth factor-beta (TGF-beta) in bovine aortic endothelial cells (BAECs) via enhancement of cellular plasminogen activator (PA)/plasmin levels. The resultant TGF-beta suppresses the excessive fibrinolytic activity by decreasing PA expression and stimulating expression of the PA inhibitor, PA inhibitor-1 (PAI-1), and inhibits cell proliferation. Here, we report that, in this regulatory system, RA simultaneously up-regulates the expression of TGF-beta receptor types I and II, resulting in enhancement of TGF-beta activity in the cells. RA increased the numbers of high- and low-affinity binding sites for 125I-TGF-beta1 2.1-fold and 1.5-fold, respectively, without alteration of their Kd values. Affinity labeling and Western and Northern blotting studies showed that, following RA treatment, surface levels of both type I and type II receptors increased due to augmentation in their mRNA levels. The effect was dose- and time-dependent. Treatment with 1 microM RA for 15 hr increased mRNA levels of type I and II receptor threefold and eightfold, respectively. Pretreatment of BAECs with either RA or retinol lowered the concentration of TGF-beta1 required to suppress PA levels, to enhance PAI-1 levels, and to inhibit cell proliferation. Thus, retinoids may regulate cellular functions of BAECs not only by inducing the formation of active TGF-beta but also by stimulating TGF-beta receptor expression. This regulatory mechanism may sustain TGF-beta-mediated regulation of EC function at a focal site where RA is acting.[1]References
- Retinoids potentiate transforming growth factor-beta activity in bovine endothelial cells through up-regulating the expression of transforming growth factor-beta receptors. Yoshizawa, M., Miyazaki, H., Kojima, S. J. Cell. Physiol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg