The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells.

We have previously shown that, among various isoprenoids, farnesol and geranylgeraniol specifically induced actin fiber disorganization, growth inhibition, and apoptosis in human lung adenocarcinoma A549 cells (Miquel, K., Pradines, A., and Favre, G. (1996) Biochem. Biophys. Res. Commun. 225, 869-876). Here we demonstrate that isoprenoid-induced apoptosis was preceded by an arrest in G0/G1 phase. The isoprenoid effects were independent of protein prenylation and of mitogen-activated protein kinase activity. Moreover, geranylgeraniol and farnesol induced a rapid inhibition of phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by choline phosphotransferase and not at the level of CTP:phosphocholine cytidylyltransferase, the key enzyme of the pathway. Inhibition of choline phosphotransferase was confirmed by in vitro assays on microsomal fractions, which clearly showed that the isoprenoids acted by competitive inhibition with the diacylglycerol binding. Exogenous phosphatidylcholine addition prevented all the biological effects of the isoprenoids, including actin fiber disorganization and apoptosis, suggesting that inhibition of phosphatidylcholine biosynthesis might be the primary event of the isoprenoid action. These data demonstrate the molecular mechanism of geranylgeraniol and farnesol effects and suggest that the mevalonate pathway, leading notably to prenylated proteins, might be linked to the control of cell proliferation through the regulation of phosphatidylcholine biosynthesis.[1]


WikiGenes - Universities