The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

farnesol     (2E,6E)-3,7,11- trimethyldodeca-2,6,10...

Synonyms: Nikkosome, Polyprenol, trans-Farnesol, Inhibitor A2, F203_ALDRICH, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of farnesol

  • We have previously shown that, among various isoprenoids, farnesol and geranylgeraniol specifically induced actin fiber disorganization, growth inhibition, and apoptosis in human lung adenocarcinoma A549 cells (Miquel, K., Pradines, A., and Favre, G. (1996) Biochem. Biophys. Res. Commun. 225, 869-876) [1].
  • We then gave 500 mg/kg body weight farnesol by gavage to Sabra hypertensive and normotensive rats and found that farnesol reduced blood pressure significantly in the hypertensive strain for at least 48 hours [2].
  • Lovastatin's effects on cell viability were partially reversed in the presence of farnesol, and treatment of mesothelioma cells with a specific farnesyl-protein transferase (FTP) inhibitor decreased cell viability and induced morphologic changes indistinguishable from those caused by lovastatin [3].
  • The purpose of this study was to determine the role of farnesol during infection with a well-established mouse model of systemic candidiasis with C. albicans A72 administered by tail vein injection [4].
  • Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility [5].
 

High impact information on farnesol

  • Farnesol metabolites are generated intracellularly and are required for the synthesis of cholesterol, bile acids, steroids, retinoids, and farnesylated proteins [6].
  • It was further demonstrated that AFC and farnesol inhibited KCl and NaF-induced contractions, suggesting a complex action on Ca2+ channels and G protein-dependent pathways [7].
  • Using in vitro structural assays, we now show that the pathway derivative farnesol causes Hmg2p to undergo a change to a less folded structure [8].
  • Cell division was inhibited by adding either alpha factor or farnesol [9].
  • The ability of Nicotiana tabacum cell cultures to utilize farnesol (F-OH) for sterol and sesquiterpene biosynthesis was investigated [10].
 

Chemical compound and disease context of farnesol

 

Biological context of farnesol

 

Anatomical context of farnesol

 

Associations of farnesol with other chemical compounds

  • The effect is reversible, biologically relevant by numerous criteria, highly specific for farnesol structure, and requires an intact Hmg2p sterol-sensing domain [8].
  • Uncoupling farnesol-induced apoptosis from its inhibition of phosphatidylcholine synthesis [23].
  • Further resolution of the material by normal phase liquid chromatography and thin layer chromatography demonstrated the presence of farnesol, nerolidol, and other unidentified hydrophobic derivatives [24].
  • Effects of farnesol and JH on INV and transglutaminase mRNA levels were additive with high calcium concentrations (1.2 mM) that independently stimulate keratinocyte differentiation [21].
  • Earlier experiments with animal and human arteries have shown that farnesol, a natural 15-carbon (C15) isoprenoid, is an inhibitor of vasoconstriction (Roullet, J.-B., Xue, H., Chapman, J., McDougal, P., Roullet, C. M., and McCarron, D. A. (1996) J. Clin. Invest. 97, 2384-2390) [20].
  • Growth with C. albicans leads to decreased production of PQS and pyocyanin by P. aeruginosa, suggesting that the amount of farnesol produced by the fungus is sufficient to impact P. aeruginosa PQS signalling [25].
 

Gene context of farnesol

 

Analytical, diagnostic and therapeutic context of farnesol

References

  1. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. Miquel, K., Pradines, A., Tercé, F., Selmi, S., Favre, G. J. Biol. Chem. (1998) [Pubmed]
  2. Farnesol blocks the L-type Ca2+ channel by targeting the alpha 1C subunit. Luft, U.C., Bychkov, R., Gollasch, M., Gross, V., Roullet, J.B., McCarron, D.A., Ried, C., Hofmann, F., Yagil, Y., Yagil, C., Haller, H., Luft, F.C. Arterioscler. Thromb. Vasc. Biol. (1999) [Pubmed]
  3. Lovastatin induces apoptosis in malignant mesothelioma cells. Rubins, J.B., Greatens, T., Kratzke, R.A., Tan, A.T., Polunovsky, V.A., Bitterman, P. Am. J. Respir. Crit. Care Med. (1998) [Pubmed]
  4. Effect of Farnesol on a Mouse Model of Systemic Candidiasis, Determined by Use of a DPP3 Knockout Mutant of Candida albicans. Navarathna, D.H., Hornby, J.M., Krishnan, N., Parkhurst, A., Duhamel, G.E., Nickerson, K.W. Infect. Immun. (2007) [Pubmed]
  5. Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility. Jabra-Rizk, M.A., Meiller, T.F., James, C.E., Shirtliff, M.E. Antimicrob. Agents Chemother. (2006) [Pubmed]
  6. Identification of a nuclear receptor that is activated by farnesol metabolites. Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., Noonan, D.J., Burka, L.T., McMorris, T., Lamph, W.W., Evans, R.M., Weinberger, C. Cell (1995) [Pubmed]
  7. Farnesyl analogues inhibit vasoconstriction in animal and human arteries. Roullet, J.B., Xue, H., Chapman, J., McDougal, P., Roullet, C.M., McCarron, D.A. J. Clin. Invest. (1996) [Pubmed]
  8. Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. Shearer, A.G., Hampton, R.Y. EMBO J. (2005) [Pubmed]
  9. Curing of yeast [PSI+] prion by guanidine inactivation of Hsp104 does not require cell division. Wu, Y.X., Greene, L.E., Masison, D.C., Eisenberg, E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. Farnesol is utilized for isoprenoid biosynthesis in plant cells via farnesyl pyrophosphate formed by successive monophosphorylation reactions. Thai, L., Rush, J.S., Maul, J.E., Devarenne, T., Rodgers, D.L., Chappell, J., Waechter, C.J. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  11. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Brehm-Stecher, B.F., Johnson, E.A. Antimicrob. Agents Chemother. (2003) [Pubmed]
  12. Anticancer effects of zoledronic acid against human osteosarcoma cells. Kubista, B., Trieb, K., Sevelda, F., Toma, C., Arrich, F., Heffeter, P., Elbling, L., Sutterlüty, H., Scotlandi, K., Kotz, R., Micksche, M., Berger, W. J. Orthop. Res. (2006) [Pubmed]
  13. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Burke, Y.D., Stark, M.J., Roach, S.L., Sen, S.E., Crowell, P.L. Lipids (1997) [Pubmed]
  14. Bacteriochlorophyll cs, a new bacteriochlorophyll from Chloroflexus aurantiacus. Gloe, A., Risch, N. Arch. Microbiol. (1978) [Pubmed]
  15. Actions of farnesol and xylitol against Staphylococcus aureus. Akiyama, H., Oono, T., Huh, W.K., Yamasaki, O., Ogawa, S., Katsuyama, M., Ichikawa, H., Iwatsuki, K. Chemotherapy. (2002) [Pubmed]
  16. Caspase processing and nuclear export of CTP:phosphocholine cytidylyltransferase alpha during farnesol-induced apoptosis. Lagace, T.A., Miller, J.R., Ridgway, N.D. Mol. Cell. Biol. (2002) [Pubmed]
  17. The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Shipman, C.M., Croucher, P.I., Russell, R.G., Helfrich, M.H., Rogers, M.J. Cancer Res. (1998) [Pubmed]
  18. Inhibition of protein geranylgeranylation causes a superinduction of nitric-oxide synthase-2 by interleukin-1beta in vascular smooth muscle cells. Finder, J.D., Litz, J.L., Blaskovich, M.A., McGuire, T.F., Qian, Y., Hamilton, A.D., Davies, P., Sebti, S.M. J. Biol. Chem. (1997) [Pubmed]
  19. Lipid signaling in pathogenic fungi. Shea, J.M., Del Poeta, M. Curr. Opin. Microbiol. (2006) [Pubmed]
  20. Farnesol inhibits L-type Ca2+ channels in vascular smooth muscle cells. Roullet, J.B., Luft, U.C., Xue, H., Chapman, J., Bychkov, R., Roullet, C.M., Luft, F.C., Haller, H., McCarron, D.A. J. Biol. Chem. (1997) [Pubmed]
  21. Farnesol stimulates differentiation in epidermal keratinocytes via PPARalpha. Hanley, K., Kömüves, L.G., Ng, D.C., Schoonjans, K., He, S.S., Lau, P., Bikle, D.D., Williams, M.L., Elias, P.M., Auwerx, J., Feingold, K.R. J. Biol. Chem. (2000) [Pubmed]
  22. Xol INXS: role of the liver X and the farnesol X receptors. Fayard, E., Schoonjans, K., Auwerx, J. Curr. Opin. Lipidol. (2001) [Pubmed]
  23. Uncoupling farnesol-induced apoptosis from its inhibition of phosphatidylcholine synthesis. Wright, M.M., Henneberry, A.L., Lagace, T.A., Ridgway, N.D., McMaster, C.R. J. Biol. Chem. (2001) [Pubmed]
  24. Characterization of isoprenoid involved in the post-translational modification of mammalian cell proteins. Maltese, W.A., Erdman, R.A. J. Biol. Chem. (1989) [Pubmed]
  25. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Cugini, C., Calfee, M.W., Farrow, J.M., Morales, D.K., Pesci, E.C., Hogan, D.A. Mol. Microbiol. (2007) [Pubmed]
  26. Farnesol is glucuronidated in human liver, kidney and intestine in vitro, and is a novel substrate for UGT2B7 and UGT1A1. Staines, A.G., Sindelar, P., Coughtrie, M.W., Burchell, B. Biochem. J. (2004) [Pubmed]
  27. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Jackson, J.H., Cochrane, C.G., Bourne, J.R., Solski, P.A., Buss, J.E., Der, C.J. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  28. Omega-hydroxylation of farnesol by mammalian cytochromes p450. DeBarber, A.E., Bleyle, L.A., Roullet, J.B., Koop, D.R. Biochim. Biophys. Acta (2004) [Pubmed]
  29. NF-kappaB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. Joo, J.H., Jetten, A.M. J. Biol. Chem. (2008) [Pubmed]
  30. Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. Schaber, M.D., O'Hara, M.B., Garsky, V.M., Mosser, S.C., Bergstrom, J.D., Moores, S.L., Marshall, M.S., Friedman, P.A., Dixon, R.A., Gibbs, J.B. J. Biol. Chem. (1990) [Pubmed]
  31. Farnesol-derived dicarboxylic acids in the urine of animals treated with zaragozic acid A or with farnesol. Bostedor, R.G., Karkas, J.D., Arison, B.H., Bansal, V.S., Vaidya, S., Germershausen, J.I., Kurtz, M.M., Bergstrom, J.D. J. Biol. Chem. (1997) [Pubmed]
  32. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation by the nonsterol mevalonate metabolite farnesol in vivo. Meigs, T.E., Roseman, D.S., Simoni, R.D. J. Biol. Chem. (1996) [Pubmed]
  33. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Cao, Y.Y., Cao, Y.B., Xu, Z., Ying, K., Li, Y., Xie, Y., Zhu, Z.Y., Chen, W.S., Jiang, Y.Y. Antimicrob. Agents Chemother. (2005) [Pubmed]
 
WikiGenes - Universities