The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cell cycle regulation and differentiation in the human podocyte lineage.

Mature podocytes are regarded as growth-arrested cells with characteristic phenotypic features that underlie their function. To determine the relationship between cell cycle regulation and differentiation, the spatiotemporal expression of cyclin A, cyclin B1, cyclin D1, the cyclin-dependent kinase inhibitors (CKIs) p27 and p57, and markers of differentiating podocytes in developing human kidneys was investigated by immunohistochemistry. In S-shaped body stage, Ki-67, a cell proliferation marker that labels the G1/S/ G2/M phase, was expressed in the majority (more than 80%) of presumptive podocytes, along with cyclin A (approximately 20% of the Ki-67-positive cells) and cyclin B1 (less than 5% of Ki-67-positive cells) expression. Among these cells), cyclin D1 and CKIs were markedly down-regulated. At the capillary-loop stage, by contrast, CKIs and cyclin D1 were intensely positive in podocytes, whereas no Ki-67, cyclin B1, or cyclin A expression was seen. Moreover, double-immunolabeling and serial-section analysis provided evidence that CKIs and markers specific for differentiating podocytes, namely PHM-5 (podocalyxin-like protein in humans), synaptopodin (a foot process-related protein), and C3b receptor, were co-expressed at the capillary-loop stage. Podocytes were the only cells within the glomeruli that expressed CKIs at immunohistochemically detectable levels. Furthermore, bcl-2 (an apoptosis inhibitory protein) showed a reciprocal expression pattern to that of CKI. These results suggest that 1) the cell cycle of podocytes is regulated by cyclin and CKIs, 2) CKIs may act to arrest the cell cycle in podocytes at the capillary-loop stage, and 3) the specific cell cycle system in podocytes may be closely correlated with their terminal differentiation in humans.[1]

References

  1. Cell cycle regulation and differentiation in the human podocyte lineage. Nagata, M., Nakayama, K., Terada, Y., Hoshi, S., Watanabe, T. Am. J. Pathol. (1998) [Pubmed]
 
WikiGenes - Universities