Mild oxidation of lipoproteins increases their affinity for surfaces covered by heparan sulfate and lipoprotein lipase.
Lipoprotein lipase ( LPL) is present in cells involved in development of atherosclerosis (endothelial cells, smooth muscle cells, and macrophages). A direct involvement of LPL in atherogenesis has been suggested. Previously we used the surface plasmon resonance technique to study the interaction of lipoproteins with surfaces covered by heparan sulfate proteoglycans (HSPG) and LPL [A. Lookene et al. (1997) Biochemistry 36, 5267-5275]. The binding was much increased by the presence of LPL. Here we demonstrate that mild oxidation of low-density-lipoprotein (LDL) and very-low-density lipoprotein (VLDL) in vitro increases their binding to surfaces covered by HSPG and LPL, while extensive oxidation decreases it. Similar results were obtained with a lipid emulsion (Intralipid), indicating that oxidation-induced changes of the lipid part could explain the effects. LPL increased binding and uptake of the mildly oxidized (compared to nonoxidized) LDL by THP-I monocyte-derived macrophages. Our studies indicate that LPL has the highest affinity for mildly oxidized LDL and support its involvement in development of atherosclerosis.[1]References
- Mild oxidation of lipoproteins increases their affinity for surfaces covered by heparan sulfate and lipoprotein lipase. Makoveichuk, E., Lookene, A., Olivecrona, G. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg