The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at GluR5 receptors.

(RS)-2-Amino-3-[3-(carboxymethoxy)-5-tert-butyl-4-isoxazolyl]propi onic acid (ATOA) has previously been described as an antagonist at (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors with an IC50 value of 150 microM towards AMPA-induced depolarisation in the rat cortical wedge preparation. ATOA has now been shown also to be a partial agonist at recombinant GluR5 receptors, expressed in Xenopus oocytes, with an EC50 value of 170 microM and a relative efficacy of 0.17 +/- 0.04 compared with responses produced by kainic acid (1.0). Using cultured cerebral cortical neurones as a test system and leakage of lactate dehydrogenase (LDH) as an indicator of cell damage, ATOA was shown to be cytotoxic (ED50 > 300 microM), though much less toxic than the structurally related dual AMPA and GluR5 agonist, (RS)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isoxazolyl)propionic acid (ATPA) (ED50 = 14 +/- 2 microM). The toxic effect of ATPA was sensitive to 6,7-dinitroquinoxaline-2,3-dione (DNQX) but was not significantly reduced by the selective AMPA receptor antagonist, (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA). The toxicity of ATOA (1 mM) could not be significantly attenuated by co-administration of AMOA (300 microM) or DNQX (25 microM). A structure-activity analysis indicates that the tert-butyl group of ATPA and ATOA facilitates the interaction of these compounds with GluR5 receptors.[1]

References

  1. Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at GluR5 receptors. Wahl, P., Frandsen, A., Madsen, U., Schousboe, A., Krogsgaard-Larsen, P. Neuropharmacology (1998) [Pubmed]
 
WikiGenes - Universities