The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Grik1  -  glutamate receptor, ionotropic, kainate 1

Mus musculus

Synonyms: A830007B11Rik, D16Ium24, D16Ium24e, GluK1, GluK5, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Grik1


High impact information on Grik1


Biological context of Grik1


Anatomical context of Grik1


Associations of Grik1 with chemical compounds

  • Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations [17].
  • To address the role of glutamate receptor mRNA editing in the brain, we have made two strains of mice with mutations at amino acid 636, the Q/R-editing site in GluR5, using embryonic stem cell-mediated transgenesis [9].
  • GluR5(RloxP/RloxP) mice encode an arginine at the Q/R site of the GluR5 subunit, whereas GluR5(wt(loxP)/wt(loxP)) mice encode a glutamine at this site, similar to wild-type mice [9].
  • Here we show that responses to capsaicin or inflammatory pain were significantly reduced in mice lacking glutamate receptor 5 (GluR5) but not GluR6 subunits [13].
  • In particular, the piperazine 6e represents a highly potent and selective antagonist to GluR5 [18].

Other interactions of Grik1

  • In classic fear-memory tests, mice lacking GluR6 but not GluR5 showed a significant reduction in fear memory when measured 3, 7, or 14 d after training [13].
  • The inhibition of glycogen synthase kinase 3beta by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Abeta peptides [19].
  • In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells [20].
  • There was a tendency of GluR6/7 clusters to represent triad-associated contacts, whereas GluR5 clusters represented non-triad-associated contacts [21].
  • We also performed double-labeling experiments with the ribbon-specific marker bassoon and with antibodies against GluR5 and GluR6/7 in order to define the position of the flat bipolar cell contacts with respect to the triads [21].

Analytical, diagnostic and therapeutic context of Grik1


  1. Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GluR5/6/7. Huntley, G.W., Rogers, S.W., Moran, T., Janssen, W., Archin, N., Vickers, J.C., Cauley, K., Heinemann, S.F., Morrison, J.H. J. Neurosci. (1993) [Pubmed]
  2. Heterogeneity of homomeric GluR5 kainate receptor desensitization expressed in HEK293 cells. Swanson, G.T., Heinemann, S.F. J. Physiol. (Lond.) (1998) [Pubmed]
  3. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist. Kaminski, R.M., Banerjee, M., Rogawski, M.A. Neuropharmacology (2004) [Pubmed]
  4. The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington's disease. Schiefer, J., Sprünken, A., Puls, C., Lüesse, H.G., Milkereit, A., Milkereit, E., Johann, V., Kosinski, C.M. Brain Res. (2004) [Pubmed]
  5. Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. Hu, H.J., Bhave, G., Gereau, R.W. J. Neurosci. (2002) [Pubmed]
  6. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Contractor, A., Swanson, G., Heinemann, S.F. Neuron (2001) [Pubmed]
  7. Subunit composition of kainate receptors in hippocampal interneurons. Mulle, C., Sailer, A., Swanson, G.T., Brana, C., O'Gorman, S., Bettler, B., Heinemann, S.F. Neuron (2000) [Pubmed]
  8. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. Lu, Y.M., Jia, Z., Janus, C., Henderson, J.T., Gerlai, R., Wojtowicz, J.M., Roder, J.C. J. Neurosci. (1997) [Pubmed]
  9. Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. Sailer, A., Swanson, G.T., Pérez-Otaño, I., O'Leary, L., Malkmus, S.A., Dyck, R.H., Dickinson-Anson, H., Schiffer, H.H., Maron, C., Yaksh, T.L., Gage, F.H., O'Gorman, S., Heinemann, S.F. J. Neurosci. (1999) [Pubmed]
  10. Differential trafficking of GluR7 kainate receptor subunit splice variants. Jaskolski, F., Normand, E., Mulle, C., Coussen, F. J. Biol. Chem. (2005) [Pubmed]
  11. Low-affinity kainate receptor-mediated events reduce the protective activity of phenobarbital and diphenylhydantoin against maximal electroshock in mice. Borowicz, K.K., Zadrozniak, M., Czuczwar, S.J. Neuropharmacology (2002) [Pubmed]
  12. Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at GluR5 receptors. Wahl, P., Frandsen, A., Madsen, U., Schousboe, A., Krogsgaard-Larsen, P. Neuropharmacology (1998) [Pubmed]
  13. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. Ko, S., Zhao, M.G., Toyoda, H., Qiu, C.S., Zhuo, M. J. Neurosci. (2005) [Pubmed]
  14. Modulation of excitatory synaptic transmission in the spinal substantia gelatinosa of mice deficient in the kainate receptor GluR5 and/or GluR6 subunit. Youn, D.H., Randic, M. J. Physiol. (Lond.) (2004) [Pubmed]
  15. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. Bischoff, S., Barhanin, J., Bettler, B., Mulle, C., Heinemann, S. J. Comp. Neurol. (1997) [Pubmed]
  16. Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. Kerchner, G.A., Wilding, T.J., Huettner, J.E., Zhuo, M. J. Neurosci. (2002) [Pubmed]
  17. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. Fisahn, A., Contractor, A., Traub, R.D., Buhl, E.H., Heinemann, S.F., McBain, C.J. J. Neurosci. (2004) [Pubmed]
  18. Pyrrolylquinoxalinediones carrying a piperazine residue represent highly potent and selective ligands to the homomeric kainate receptor GluR5. Lubisch, W., Behl, B., Henn, C., Hofmann, H.P., Reeb, J., Regner, F., Vierling, M. Bioorg. Med. Chem. Lett. (2002) [Pubmed]
  19. The inhibition of glycogen synthase kinase 3beta by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Abeta peptides. Liu, F., Gong, X., Zhang, G., Marquis, K., Reinhart, P., Andree, T.H. J. Neurochem. (2005) [Pubmed]
  20. Roles of ionotropic glutamate receptors in early developing neurons derived from the P19 mouse cell line. Lee, Y.H., Lin, C.H., Hsu, L.W., Hu, S.Y., Hsiao, W.T., Ho, Y.S. J. Biomed. Sci. (2003) [Pubmed]
  21. Localization of kainate receptors at the cone pedicles of the primate retina. Haverkamp, S., Grünert, U., Wässle, H. J. Comp. Neurol. (2001) [Pubmed]
WikiGenes - Universities