The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy.

To determine whether neuroblastomas acquire a sustained drug-resistant phenotype from exposure to chemotherapeutic agents given to patients in vivo, we studied neuroblastoma cell lines established at different points of therapy: six at diagnosis before therapy (DX), six at progressive disease during induction therapy (PD-Ind), and five at relapse after intensive chemoradiotherapy and bone marrow transplantation (PD-BMT). Cells were maintained in the absence of drug selective pressure. Dose-response curves of melphalan, cisplatin, carboplatin, doxorubicin, and etoposide for the cell line panel were determined by measuring cytotoxicity with a 96-well-plate digital imaging microscopy (DIMSCAN) microassay. Drug resistance of cell lines progressively increased with the intensity of therapy delivered in vivo. The greatest resistance was seen in PD-BMT cell lines: IC90 values in PD-BMT cell lines were higher than clinically achievable drug levels by 1-37 times for melphalan, 1-9 times for carboplatin, 25-78 times for cisplatin, 6-719 times for doxorubicin, and 3-52 times for etoposide. Genomic amplification of MYCN did not correlate with resistance. Cross-resistance by Pearson correlation (r > or = 0.6) was observed between: (a) cisplatin + doxorubicin; (b) carboplatin + cisplatin, etoposide, or melphalan; (c) etoposide + cisplatin, melphalan, or doxorubicin. These data indicate that during therapy, neuroblastomas can acquire resistance to cytotoxic drugs because of the population expansion of tumor cells possessing stable genetic or epigenetic alterations that confer resistance.[1]

References

  1. Drug resistance patterns of human neuroblastoma cell lines derived from patients at different phases of therapy. Keshelava, N., Seeger, R.C., Groshen, S., Reynolds, C.P. Cancer Res. (1998) [Pubmed]
 
WikiGenes - Universities