Vigabatrin increases human brain homocarnosine and improves seizure control.
Homocarnosine, a dipeptide of gamma-aminobutyric acid (GABA) and histidine, is thought to be an inhibitory neuromodulator synthesized in subclasses of GABAergic neurons. Homocarnosine is present in human brain in greater amounts (0.4-1.0 micromol/g) than in other animals. The antiepileptic drug vigabatrin increases human cerebrospinal fluid homocarnosine linearly with daily dose. By using 1H nuclear magnetic resonance spectroscopy, serial occipital lobe GABA and homocarnosine concentrations were measured in 11 patients started on vigabatrin. Daily low-dose (2 g) vigabatrin increased both homocarnosine and GABA. Larger doses of vigabatrin (4 g) further increased homocarnosine but changed GABA levels minimally. Seizure control improved with increasing homocarnosine and GABA concentrations. Patients whose seizure control improved with the addition of vigabatrin had higher mean homocarnosine, but the same mean GABA concentrations, than those whose seizure control did not improve. Increased homocarnosine may contribute to improved seizure control.[1]References
- Vigabatrin increases human brain homocarnosine and improves seizure control. Petroff, O.A., Mattson, R.H., Behar, K.L., Hyder, F., Rothman, D.L. Ann. Neurol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg