The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Homocarnosine     2-(4-aminobutanoylamino)-3- (3H-imidazol-4...

Synonyms: CHEBI:28050, NSC-92522, SureCN10937318, AC1L3HFG, AC1Q5SHP, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC92522

 

Psychiatry related information on NSC92522

 

High impact information on NSC92522

 

Chemical compound and disease context of NSC92522

  • Since glutathione, carnosine, homocarnosine, and anserine are considered to be cellular antioxidants, the present work suggests that instead of protecting against oxidative damage, these oligopeptides may facilitate the Ni(2+)-mediated free radical generation and thus may participate in the mechanism(s) of Ni2+ toxicity and carcinogenicity [11].
  • These facts suggest that the sedative activity of these drugs except ACTH might be partially explained by the increase of inhibitory amino acids in the brain, such as glutamine, homocarnosine and taurine, and that of ACTH by the dehydration of the brain, resulting in concentration of many free amino acids [12].
 

Biological context of NSC92522

  • The inability of homocarnosine to react with HOCl, interfere with the TBA test or affect lipid peroxidation systems in the same way as carnosine is surprising in view of the apparent structural similarity between these two molecules [13].
  • These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that antioxidants, such as homocarnosine, may prevent OGD-induced neuronal death by inhibiting the apoptotic process and/or in relation to the differential attenuation of activity of MAPKs [4].
  • Since the GABA conjugate homocarnosine is increased in the brain following GABA-T inhibition and since homocarnosine is known to displace [3H]-GABA from its binding sites at high concentration, we investigated whether homocarnosine might explain the dyskinetic movements produced by these GABA-T inhibitors [14].
  • The physiological function of this enzyme seems to be the hydrolysis of homocarnosine in the brain and the splitting of carnosine and anserine in the blood stream [15].
  • In infants under 2 years of age, significant correlation between homocarnosine levels in CSF and the gestational age was found (r = 0.79, p less than 0.001) [16].
 

Anatomical context of NSC92522

 

Associations of NSC92522 with other chemical compounds

 

Gene context of NSC92522

 

Analytical, diagnostic and therapeutic context of NSC92522

References

  1. Bilateral striopallidodentate calcinosis: cerebrospinal fluid, imaging, and electrophysiological studies. Manyam, B.V., Bhatt, M.H., Moore, W.D., Devleschoward, A.B., Anderson, D.R., Calne, D.B. Ann. Neurol. (1992) [Pubmed]
  2. Probiotics. Antistaphylococcal and antifibrinolytic activities of omega-amino-and omega-guanidinoalkanisulfonic acids. Fujii, A., Cook, E.S. J. Med. Chem. (1975) [Pubmed]
  3. Neuroprotective effects of carnosine and homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. Tabakman, R., Lazarovici, P., Kohen, R. J. Neurosci. Res. (2002) [Pubmed]
  4. Apoptotic characteristics of cell death and the neuroprotective effect of homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. Tabakman, R., Jiang, H., Levine, R.A., Kohen, R., Lazarovici, P. J. Neurosci. Res. (2004) [Pubmed]
  5. Reductions in occipital cortex GABA levels in panic disorder detected with 1h-magnetic resonance spectroscopy. Goddard, A.W., Mason, G.F., Almai, A., Rothman, D.L., Behar, K.L., Petroff, O.A., Charney, D.S., Krystal, J.H. Arch. Gen. Psychiatry (2001) [Pubmed]
  6. Human CSF GABA concentrations: revised downward for controls, but not decreased in Huntington's chorea. Perry, T.L., Hansen, S., Wall, R.A., Gauthier, S.G. J. Neurochem. (1982) [Pubmed]
  7. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Kohen, R., Yamamoto, Y., Cundy, K.C., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  8. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. Teufel, M., Saudek, V., Ledig, J.P., Bernhardt, A., Boularand, S., Carreau, A., Cairns, N.J., Carter, C., Cowley, D.J., Duverger, D., Ganzhorn, A.J., Guenet, C., Heintzelmann, B., Laucher, V., Sauvage, C., Smirnova, T. J. Biol. Chem. (2003) [Pubmed]
  9. Homocarnosine and seizure control in juvenile myoclonic epilepsy and complex partial seizures. Petroff, O.A., Hyder, F., Rothman, D.L., Mattson, R.H. Neurology (2001) [Pubmed]
  10. Homology modeling of human serum carnosinase, a potential medicinal target, and MD simulations of its allosteric activation by citrate. Vistoli, G., Pedretti, A., Cattaneo, M., Aldini, G., Testa, B. J. Med. Chem. (2006) [Pubmed]
  11. Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides. Shi, X., Dalal, N.S., Kasprzak, K.S. Arch. Biochem. Biophys. (1992) [Pubmed]
  12. Amino acid metabolism in the brain with convulsive disorders. Part 2: The effects of anticonvulsants on convulsions and free amino acid patterns in the brain of El mouse. Honda, T. Brain Dev. (1984) [Pubmed]
  13. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Aruoma, O.I., Laughton, M.J., Halliwell, B. Biochem. J. (1989) [Pubmed]
  14. Does homocarnosine mediate the dyskinetic movements induced by gaba-transaminase inhibitors. Robin, M.M., Palfreyman, M.G. Neuropharmacology (1982) [Pubmed]
  15. Purification and properties of human serum carnosinase. Jackson, M.C., Kucera, C.M., Lenney, J.F. Clin. Chim. Acta (1991) [Pubmed]
  16. Studies on homocarnosine in cerebrospinal fluid in infancy and childhood. Part I. Homocarnosine level in cerebrospinal fluid of normal infants and children. Takahashi, H. Brain Dev. (1981) [Pubmed]
  17. Metabolism of carnosine and homocarnosine in subcellular fractions and neuronal and glial cell-enriched fractions of rabbit brain. Ng, R.H., Marshall, F.D., Henn, F.A., Sellström, A. J. Neurochem. (1977) [Pubmed]
  18. Homocarnosine and the measurement of neuronal pH in patients with epilepsy. Rothman, D.L., Behar, K.L., Prichard, J.W., Petroff, O.A. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. (1997) [Pubmed]
  19. Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Holliday, R., McFarland, G.A. Br. J. Cancer (1996) [Pubmed]
  20. Carnosine and homocarnosine, the forgotten, enigmatic peptides of the brain. Bauer, K. Neurochem. Res. (2005) [Pubmed]
  21. Localization of a novel pathway for the liberation of GABA in the human CNS. Jackson, M.C., Scollard, D.M., Mack, R.J., Lenney, J.F. Brain Res. Bull. (1994) [Pubmed]
  22. Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Petroff, O.A., Hyder, F., Mattson, R.H., Rothman, D.L. Neurology (1999) [Pubmed]
  23. Artifactual increases in the concentration of free GABA in samples of human cerebrospinal fluid are due to degradation of homocarnosine. Grove, J., Schechter, P.J., Tell, G., Rumbach, L., Marescaux, C., Warter, J.M., Koch-Weser, J. J. Neurochem. (1982) [Pubmed]
  24. Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Boldyrev, A., Song, R., Lawrence, D., Carpenter, D.O. Neuroscience (1999) [Pubmed]
  25. Effects of vigabatrin on brain GABA+/CR signals in patients with epilepsy monitored by 1H-NMR-spectroscopy: responder characteristics. Mueller, S.G., Weber, O.M., Duc, C.O., Weber, B., Meier, D., Russ, W., Boesiger, P., Wieser, H.G. Epilepsia (2001) [Pubmed]
  26. The ceruloplasmin and hydrogen peroxide system induces alpha-synuclein aggregation in vitro. Kim, K.S., Choi, S.Y., Kwon, H.Y., Won, M.H., Kang, T.C., Kang, J.H. Biochimie (2002) [Pubmed]
  27. Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Kang, J.H., Kim, K.S., Choi, S.Y., Kwon, H.Y., Won, M.H., Kang, T.C. Mol. Cells (2002) [Pubmed]
  28. Total GABA and homocarnosine in CSF as indices of brain GABA concentrations. Palfreyman, M.G., Huot, S., Grove, J. Neurosci. Lett. (1983) [Pubmed]
  29. Concentration gradients of free and total gamma-aminobutyric acid and homocarnosine in human CSF: comparison of suboccipital and lumbar sampling. Grove, J., Schechter, P.J., Hanke, N.F., de Smet, Y., Agid, Y., Tell, G., Koch-Weser, J. J. Neurochem. (1982) [Pubmed]
  30. Determination of ophidine in human urine. Undrum, T., Lunde, H., Gjessing, L.R. J. Chromatogr. (1982) [Pubmed]
  31. Carnosine in the brain and olfactory system of amphibia and reptilia: a comparative study using immunocytochemical and biochemical methods. Artero, C., Martì, E., Biffo, S., Mulatero, B., Andreone, C., Margolis, F.L., Fasolo, A. Neurosci. Lett. (1991) [Pubmed]
  32. Transport and distribution of homocarnosine after intracerebroventricular and intravenous injection in the rat. Ziesler, O., Hole, K., Haugan, I., Børresen, A.L., Gjessing, L.R., Sjaastad, O. Neurochem. Res. (1984) [Pubmed]
 
WikiGenes - Universities