The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter.

Sialic acid and glucuronic acid are monocarboxylated monosaccharides, which are normally present in sugar side chains of glycoproteins, glycolipids, and glycosaminoglycans. After degradation of these compounds in lysosomes, the free monosaccharides are released from the lysosome by a specific membrane transport system. This transport system is deficient in the human hereditary lysosomal sialic acid storage diseases (Salla disease and infantile sialic acid storage disease, OMIM 269920). The lysosomal sialic acid transporter from rat liver has now been purified to apparent homogeneity in a reconstitutively active form by a combination of hydroxyapatite, lectin, and ion exchange chromatography. A 57-kDa protein correlated with transport activity. The transporter recognized structurally different types of acidic monosaccharides, like sialic acid, glucuronic acid, and iduronic acid. Transport of glucuronic acid was inhibited by a number of aliphatic monocarboxylates (i.e. lactate, pyruvate, and valproate), substituted monocarboxylates, and several dicarboxylates. cis-Inhibition, trans-stimulation, and competitive inhibition experiments with radiolabeled glucuronic acid as well as radiolabeled L-lactate demonstrated that L-lactate is transported by the lysosomal sialic acid transporter. L-Lactate transport was proton gradient-dependent, saturable with a Km of 0.4 mM, and mediated by a single mechanism. These data show striking biochemical and structural similarities of the lysosomal sialic acid transporter with the known monocarboxylate transporters of the plasma membrane ( MCT1, MCT2, MCT3, and Mev).[1]

References

  1. Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter. Havelaar, A.C., Mancini, G.M., Beerens, C.E., Souren, R.M., Verheijen, F.W. J. Biol. Chem. (1998) [Pubmed]
 
WikiGenes - Universities