The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

N-lobe versus C-lobe complexation of bismuth by human transferrin.

Interactions of recombinant N-lobe of human serum transferrin ( hTF/2N) with Bi3+, a metal ion widely used in medicine, have been investigated by both UV and NMR spectroscopy. The bicarbonate-independent stability constant for Bi3+ binding (K*) to hTF/2N was determined to be log K* 18.9+/-0.2 in 5 mM bicarbonate/10 mM Hepes buffer at 310 K, pH7. 4. The presence of Fe3+ in the C-lobe of intact hTF perturbed Bi3+ binding to the N-lobe, whereas binding of Bi3+ to the C-lobe was unaffected by the presence of Fe3+ in the N-lobe. Reactions of Bi3+ (as bismuth nitrilotriacetate or ranitidine bismuth citrate) with hTF/2N in solutions containing 10 mM bicarbonate induced specific changes to high-field 1H-NMR peaks. The 1H co-ordination shifts induced by Bi3+ were similar to those induced by Fe3+ and Ga3+, suggesting that Bi3+ binding causes similar structural changes to those induced by hTF/2N. 13C-NMR data showed that carbonate binds to hTF/2N concomitantly with Bi3+.[1]

References

  1. N-lobe versus C-lobe complexation of bismuth by human transferrin. Sun, H., Li, H., Mason, A.B., Woodworth, R.C., Sadler, P.J. Biochem. J. (1999) [Pubmed]
 
WikiGenes - Universities