The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The starvation-stress response (SSR) of Salmonella.

Salmonella serovars are common etiologic agents of intestinal-based disease of animals and humans. As a result of their lifestyle, salmonellae occupy and survive in a wide range of niches where they can encounter an even broader range of environmental stresses. One of the most common stresses is starvation for an essential nutrient such as a carbon/energy (C)-source. The genetic and physiologic changes that the bacterium undergoes in response to starvation-stress are referred to as the starvation-stress response or SSR. The genetic loci whose expression increases in response to the starvation-stress compose the SSR stimulon. Several loci of the SSR stimulon have been identified in Salmonella typhimurium and grouped, based on putative or known functions or products, into transport systems, C-compound catabolic enzymes, known protective enzymes, respiratory enzyme systems, regulatory proteins, virulence loci and unclassified products. The majority of loci identified are under positive control by the rpoS-encoded sigma factor, sigma S. However, a few are under (indirect) negative control by sigma S, but only during starvation-induced stationary phase. Most of the loci identified are also under either positive or negative control by the cAMP:CRP complex. For many, additional regulatory proteins (e.g. FadR, OxyR, and RelA and others) play a role in their regulation as well. Furthermore, most of the SSR loci identified are induced during other stresses or environmental conditions. For example, some are induced during P- or N-starvation, in addition to C-starvation; some are induced by extremes in pH or osmolarity; and some are induced in the intracellular environment of epithelial cells, and/or macrophages, and/or medium designed to mimic the intracellular milieu of mammalian cells (ISM). Several SSR loci are required for long-term starvation-survival (core SSR loci), e.g. narZ, dadA, stiC and rpoS. In addition, a few of the core SSR loci are also required for stress-specific-inducible and/or C-starvation-inducible resistance to H2O2 (e.g. stiC), thermal (e.g. stiC), and/or acid pH (e.g. narZ), challenge. Interestingly, C-starved cells are resistant to challenge with the antimicrobial peptide, polymyxin B. However, this resistance mechanism(s) is different from the resistance mechanisms for H2O2 and other environmental stresses. Furthermore, a link between the SSR and Salmonella virulence can be hypothesized since the two major regulators of the SSR, sigma s and cAMP:CRP, are required for full virulence of Salmonella. Moreover, the spv (Salmonella plasmid-associated virulence) genes, required for Salmonella to cause systemic disease, are C (and P- and N-)-starvation-inducible. However, a direct link between starvation-stress and virulence has not been established conclusively.[1]

References

  1. The starvation-stress response (SSR) of Salmonella. Spector, M.P. Adv. Microb. Physiol. (1998) [Pubmed]
 
WikiGenes - Universities