The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Persistent c-fos induction by nicotine in developing rat brain regions: interaction with hypoxia.

Prenatal nicotine exposure evokes postnatal CNS cell loss. We administered nicotine to pregnant rats throughout gestation and neonatal brains were examined for expression of c-fos, a nuclear transcription factor involved in differentiation and cell death. The nicotine group showed persistent c-fos overexpression in the forebrain long after termination of exposure; in the brainstem, overexpression was apparent both after birth and at the end of the second postnatal week. In contrast to these effects, postnatal administration on d 1-4 caused persistent c-fos only at systemically toxic doses and treatment at subsequent ages did not cause induction at all. We also determined whether prenatal nicotine exposure would sensitize the brain to a subsequent postnatal episode of hypoxia comparable to that experienced during parturition. Hypoxia evoked acute stimulation of c-fos with a regional selectivity and ontogenetic profile differing from those of prenatal nicotine and this acute response was reduced by prenatal nicotine treatment. Persistent c-fos elevation is a harbinger of cell death, a relationship that provides an underlying mechanism for eventual cell deficits that appear after fetal nicotine exposure. Nicotine's interference with the acute c-fos stimulation caused by a subsequent episode of hypoxia may indicate a further compromise of cellular repair mechanisms.[1]

References

  1. Persistent c-fos induction by nicotine in developing rat brain regions: interaction with hypoxia. Trauth, J.A., Seidler, F.J., McCook, E.C., Slotkin, T.A. Pediatr. Res. (1999) [Pubmed]
 
WikiGenes - Universities