Persistent c-fos induction by nicotine in developing rat brain regions: interaction with hypoxia.
Prenatal nicotine exposure evokes postnatal CNS cell loss. We administered nicotine to pregnant rats throughout gestation and neonatal brains were examined for expression of c-fos, a nuclear transcription factor involved in differentiation and cell death. The nicotine group showed persistent c-fos overexpression in the forebrain long after termination of exposure; in the brainstem, overexpression was apparent both after birth and at the end of the second postnatal week. In contrast to these effects, postnatal administration on d 1-4 caused persistent c-fos only at systemically toxic doses and treatment at subsequent ages did not cause induction at all. We also determined whether prenatal nicotine exposure would sensitize the brain to a subsequent postnatal episode of hypoxia comparable to that experienced during parturition. Hypoxia evoked acute stimulation of c-fos with a regional selectivity and ontogenetic profile differing from those of prenatal nicotine and this acute response was reduced by prenatal nicotine treatment. Persistent c-fos elevation is a harbinger of cell death, a relationship that provides an underlying mechanism for eventual cell deficits that appear after fetal nicotine exposure. Nicotine's interference with the acute c-fos stimulation caused by a subsequent episode of hypoxia may indicate a further compromise of cellular repair mechanisms.[1]References
- Persistent c-fos induction by nicotine in developing rat brain regions: interaction with hypoxia. Trauth, J.A., Seidler, F.J., McCook, E.C., Slotkin, T.A. Pediatr. Res. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg