The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Reciprocal inhibitory connections and network synchrony in the mammalian thalamus.

Neuronal rhythmic activities within thalamocortical circuits range from partially synchronous oscillations during normal sleep to hypersynchrony associated with absence epilepsy. It has been proposed that recurrent inhibition within the thalamic reticular nucleus serves to reduce synchrony and thus prevents seizures. Inhibition and synchrony in slices from mice devoid of the gamma-aminobutyric acid type-A (GABAA) receptor beta3 subunit were examined, because in rodent thalamus, beta3 is largely restricted to reticular nucleus. In beta3 knockout mice, GABAA-mediated inhibition was nearly abolished in reticular nucleus, but was unaffected in relay cells. In addition, oscillatory synchrony was dramatically intensified. Thus, recurrent inhibitory connections within reticular nucleus act as "desynchronizers."[1]

References

  1. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Huntsman, M.M., Porcello, D.M., Homanics, G.E., DeLorey, T.M., Huguenard, J.R. Science (1999) [Pubmed]
 
WikiGenes - Universities