The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The neurotransmitter noradrenaline drives noggin-expressing ectoderm cells to activate N-tubulin and become neurons.

Neurotransmitters regulate neuronal function in the nervous system and modulation of their synthesis, release, and binding by immature neurons and their targets is a major part of nervous system development. We propose that the neurotransmitter noradrenaline regulates neuronal fate during neurulation, before neurons have differentiated. The ability of noradrenaline to induce a neural fate was tested in naive ectoderm caps cut from late blastula stage Xenopus embryos. Noradrenaline (10(-6) M) did not switch on otx-2 or NCAM and did not induce the formation of cement glands. We conclude that noradrenaline cannot induce a neural fate. By contrast, 10(-8) M noradrenaline activated N-tubulin in ectoderm caps expressing the neural inducing molecule noggin by the time intact siblings had become mid-neurulae. Methoxamine, a specific alpha-adrenergic receptor agonist, also activated N-tubulin in noggin-expressing caps. The alpha-adrenergic receptor blocker prazosin inhibited both noradrenaline- and methoxamine-induced activation of N-tubulin. The neurotransmitters dopamine and 5-HT did not activate expression of N-tubulin. XA-1, Otx-2, X-Delta, and Xotch transcripts were not sensitive to noradrenaline. HoxB9, which indicates posteriorization, was not activated by noradrenaline. When intact siblings were at stage 27, many cells in noggin-expressing, noradrenaline-treated caps were stained by the neuron-specific mcAb3A10. We propose that noradrenaline is an important endogenous modulator of neuronal fate, driving noggin-expressing cells to become neurons by binding to alpha-adrenergic receptors and activating a cascade that culminates in the expression of the neuronal markers N-tubulin and 3A10.[1]


WikiGenes - Universities