The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Biological inactivation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human platelets.

Neutrophil-derived 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent activator of neutrophils and eosinophils. In the present study we examined the biosynthesis and metabolism of this substance by platelets. Although platelets contain an abundant amount of 5-hydroxyeicosanoid dehydrogenase, the enzyme responsible for the formation of 5-oxo-ETE, they synthesize only very small amounts of this substance from exogenous 5-hydroxyeicosatetraenoic acid (5-HETE) unless endogenous NADPH is converted to NADP+ by addition of phenazine methosulfate. Similarly, relatively small amounts of 5-oxo-ETE were formed by A23187-stimulated mixtures of platelets and neutrophils, which instead formed substantial amounts of two 12-hydroxy metabolites of this substance, 5-oxo-12-HETE and 8-trans-5-oxo-12-HETE, which were identified by comparison with authentic chemically synthesized compounds. These metabolites were also formed from 5-oxo-ETE by platelets stimulated with thrombin or A23187. In contrast, unstimulated platelets converted 5-oxo-ETE principally to 5-HETE. Neither 5-oxo-12-HETE nor 8-trans-5-oxo-12-HETE had appreciable effects on neutrophil calcium levels or platelet aggregation at concentrations as high as 10 micromol/L, but both blocked 5-oxo-ETE-induced calcium mobilization in neutrophils with IC50 values of 0.5 and 2.5 micromol/L, respectively. We conclude that platelets can biologically inactivate 5-oxo-ETE. Unstimulated platelets convert 5-oxo-ETE to 5-HETE, with a 99% loss of biological potency, whereas stimulated platelets convert this substance to 12-hydroxy metabolites, which possess antagonist properties.[1]


  1. Biological inactivation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human platelets. Powell, W.S., Gravel, S., Khanapure, S.P., Rokach, J. Blood (1999) [Pubmed]
WikiGenes - Universities