The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Eosinophils

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Eosinophils

 

Psychiatry related information on Eosinophils

  • These results may suggest that activated eosinophils by IL-5 play an important role in host defense mechanisms, releasing their toxic granule proteins on adjoining tumor cells [6].
 

High impact information on Eosinophils

  • The molecular steps involved in eosinophil development and trafficking are described, with special attention to the important role of the transcription factor GATA-1, the eosinophil-selective cytokine IL-5, and the eotaxin subfamily of chemokines [7].
  • Through the release of cytokines such as IL-4, IL-13, and IL-5, these cells orchestrate the recruitment and activation of the primary effector cells of the allergic response, the mast cell and the eosinophil [8].
  • In addition, BCL-6-deficient mice developed an inflammatory response in multiple organs characterized by infiltrations of eosinophils and IgE-bearing B lymphocytes typical of a Th2-mediated hyperimmune response [9].
  • The finding that IL5 and GM-CSF share a receptor subunit provides a molecular basis for the observation that these cytokines can partially interfere with each other's binding and have highly overlapping biological activities on eosinophils [10].
  • All three patients had elevated serum and urinary levels of this protein and eosinophil-derived neurotoxin, indicative of eosinophil degranulation [11].
 

Chemical compound and disease context of Eosinophils

 

Biological context of Eosinophils

  • At lower levels, TNF alpha plays an important protective role in stimulating chemotaxis and antimicrobial activity of neutrophils, macrophages, and eosinophils [17].
  • In addition, we observed a correlation between the level of GATA-1 expression and the phenotype of the cell, intermediate levels of the factor being expressed by eosinophils and high levels by thromboblasts, suggesting a dosage effect of the factor [18].
  • Therefore, NO concentrations within allergic inflammatory sites may be important in determining whether an eosinophil survives or undergoes apoptosis upon Fas ligand stimulation [19].
  • We have examined the functional relevance of Lyn, Jak2, and Raf-1 kinases in eosinophil survival, upregulation of adhesion molecules and degranulation [20].
  • Through deletion of the NH2-terminal residue, MCP-1(2-76) was obtained, which was a potent activator of eosinophils, as assessed by chemotaxis, cytosolic free Ca2+ changes, actin polymerization, and that induction of the respiratory burst [21].
 

Anatomical context of Eosinophils

 

Associations of Eosinophils with chemical compounds

  • Total eosinophil counts were investigated in asthmatic patients to determine their usefulness in the diagnosis and management of steroid-dependent asthma [25].
  • The cocultured eosinophils became hypodense and generated about three times as much leukotriene C4 upon activation with calcium ionophore and killed about three times as many antibody-coated larvae of Schistosoma mansoni as freshly isolated normodense eosinophils [26].
  • Although chloride is found in vivo at concentrations at least 1000-fold greater than those of other halides, human eosinophils did not preferentially oxidize chloride under physiologic conditions [27].
  • Instead, eosinophils used bromide, a halide with a hitherto unknown function in humans, to generate a halogenating oxidant with characteristics similar, if not identical, to those of hypobromous acid [27].
  • Inhibition of cPLA2, or blockade of the platelet-activating factor (PAF) receptor, blocked antigen-induced airway hyperresponsiveness and suppressed eosinophil infiltration [28].
 

Gene context of Eosinophils

 

Analytical, diagnostic and therapeutic context of Eosinophils

References

  1. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Garcia-Zepeda, E.A., Rothenberg, M.E., Ownbey, R.T., Celestin, J., Leder, P., Luster, A.D. Nat. Med. (1996) [Pubmed]
  2. Monoclonal antibodies distinguish between storage and secreted forms of eosinophil cationic protein. Tai, P.C., Spry, C.J., Peterson, C., Venge, P., Olsson, I. Nature (1984) [Pubmed]
  3. The pathobiology of bronchial asthma. Arm, J.P., Lee, T.H. Adv. Immunol. (1992) [Pubmed]
  4. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Gerwin, N., Gonzalo, J.A., Lloyd, C., Coyle, A.J., Reiss, Y., Banu, N., Wang, B., Xu, H., Avraham, H., Engelhardt, B., Springer, T.A., Gutierrez-Ramos, J.C. Immunity (1999) [Pubmed]
  5. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Hogan, S.P., Mishra, A., Brandt, E.B., Royalty, M.P., Pope, S.M., Zimmermann, N., Foster, P.S., Rothenberg, M.E. Nat. Immunol. (2001) [Pubmed]
  6. Cellular localization of interleukin-5 expression in rectal carcinoma with eosinophilia. Tajima, K., Yamakawa, M., Inaba, Y., Katagiri, T., Sasaki, H. Hum. Pathol. (1998) [Pubmed]
  7. The eosinophil. Rothenberg, M.E., Hogan, S.P. Annu. Rev. Immunol. (2006) [Pubmed]
  8. Immunologic basis of antigen-induced airway hyperresponsiveness. Wills-Karp, M. Annu. Rev. Immunol. (1999) [Pubmed]
  9. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Ye, B.H., Cattoretti, G., Shen, Q., Zhang, J., Hawe, N., de Waard, R., Leung, C., Nouri-Shirazi, M., Orazi, A., Chaganti, R.S., Rothman, P., Stall, A.M., Pandolfi, P.P., Dalla-Favera, R. Nat. Genet. (1997) [Pubmed]
  10. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W., Plaetinck, G. Cell (1991) [Pubmed]
  11. Association of the eosinophilia-myalgia syndrome with the ingestion of tryptophan. Hertzman, P.A., Blevins, W.L., Mayer, J., Greenfield, B., Ting, M., Gleich, G.J. N. Engl. J. Med. (1990) [Pubmed]
  12. An etiological role for aeroallergens and eosinophils in experimental esophagitis. Mishra, A., Hogan, S.P., Brandt, E.B., Rothenberg, M.E. J. Clin. Invest. (2001) [Pubmed]
  13. Platelet-activating factor. A potent chemotactic and chemokinetic factor for human eosinophils. Wardlaw, A.J., Moqbel, R., Cromwell, O., Kay, A.B. J. Clin. Invest. (1986) [Pubmed]
  14. Isolation of human eosinophil phospholipase D. Kater, L.A., Goetzl, E.J., Austen, K.F. J. Clin. Invest. (1976) [Pubmed]
  15. Eosinophils in chronically inflamed human upper airway tissues express transforming growth factor beta 1 gene (TGF beta 1). Ohno, I., Lea, R.G., Flanders, K.C., Clark, D.A., Banwatt, D., Dolovich, J., Denburg, J., Harley, C.B., Gauldie, J., Jordana, M. J. Clin. Invest. (1992) [Pubmed]
  16. Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4. Weller, P.F., Lee, C.W., Foster, D.W., Corey, E.J., Austen, K.F., Lewis, R.A. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  17. Cachexia and graft-vs.-host-disease-type skin changes in keratin promoter-driven TNF alpha transgenic mice. Cheng, J., Turksen, K., Yu, Q.C., Schreiber, H., Teng, M., Fuchs, E. Genes Dev. (1992) [Pubmed]
  18. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Kulessa, H., Frampton, J., Graf, T. Genes Dev. (1995) [Pubmed]
  19. Disruption of fas receptor signaling by nitric oxide in eosinophils. Hebestreit, H., Dibbert, B., Balatti, I., Braun, D., Schapowal, A., Blaser, K., Simon, H.U. J. Exp. Med. (1998) [Pubmed]
  20. Lyn, Jak2, and Raf-1 kinases are critical for the antiapoptotic effect of interleukin 5, whereas only Raf-1 kinase is essential for eosinophil activation and degranulation. Pazdrak, K., Olszewska-Pazdrak, B., Stafford, S., Garofalo, R.P., Alam, R. J. Exp. Med. (1998) [Pubmed]
  21. Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant. Weber, M., Uguccioni, M., Baggiolini, M., Clark-Lewis, I., Dahinden, C.A. J. Exp. Med. (1996) [Pubmed]
  22. Release of mast-cell mediators and alterations in lung function in patients with cholinergic urticaria. Soter, N.A., Wasserman, S.I., Austen, K.F., McFadden, E.R. N. Engl. J. Med. (1980) [Pubmed]
  23. Electron currents generated by the human phagocyte NADPH oxidase. Schrenzel, J., Serrander, L., Bánfi, B., Nüsse, O., Fouyouzi, R., Lew, D.P., Demaurex, N., Krause, K.H. Nature (1998) [Pubmed]
  24. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. DeCoursey, T.E., Morgan, D., Cherny, V.V. Nature (2003) [Pubmed]
  25. Total eosinophil counts in the management of bronchial asthma. Horn, B.R., Robin, E.D., Theodore, J., Van Kessel, A. N. Engl. J. Med. (1975) [Pubmed]
  26. Eosinophils cocultured with endothelial cells have increased survival and functional properties. Rothenberg, M.E., Owen, W.F., Silberstein, D.S., Soberman, R.J., Austen, K.F., Stevens, R.L. Science (1987) [Pubmed]
  27. Brominating oxidants generated by human eosinophils. Weiss, S.J., Test, S.T., Eckmann, C.M., Roos, D., Regiani, S. Science (1986) [Pubmed]
  28. Blockade of eosinophil migration and airway hyperresponsiveness by cPLA2-inhibition. Myou, S., Sano, H., Fujimura, M., Zhu, X., Kurashima, K., Kita, T., Nakao, S., Nonomura, A., Shioya, T., Kim, K.P., Munoz, N.M., Cho, W., Leff, A.R. Nat. Immunol. (2001) [Pubmed]
  29. Interleukin-13: central mediator of allergic asthma. Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T.Y., Karp, C.L., Donaldson, D.D. Science (1998) [Pubmed]
  30. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. Ponath, P.D., Qin, S., Post, T.W., Wang, J., Wu, L., Gerard, N.P., Newman, W., Gerard, C., Mackay, C.R. J. Exp. Med. (1996) [Pubmed]
  31. Monocyte chemotactic protein 3 is a most effective basophil- and eosinophil-activating chemokine. Dahinden, C.A., Geiser, T., Brunner, T., von Tscharner, V., Caput, D., Ferrara, P., Minty, A., Baggiolini, M. J. Exp. Med. (1994) [Pubmed]
  32. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. Bochner, B.S., Luscinskas, F.W., Gimbrone, M.A., Newman, W., Sterbinsky, S.A., Derse-Anthony, C.P., Klunk, D., Schleimer, R.P. J. Exp. Med. (1991) [Pubmed]
  33. Shear-dependent eosinophil transmigration on interleukin 4-stimulated endothelial cells: a role for endothelium-associated eotaxin-3. Cuvelier, S.L., Patel, K.D. J. Exp. Med. (2001) [Pubmed]
  34. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. Gavett, S.H., O'Hearn, D.J., Li, X., Huang, S.K., Finkelman, F.D., Wills-Karp, M. J. Exp. Med. (1995) [Pubmed]
  35. Human eosinophils express transforming growth factor alpha. Wong, D.T., Weller, P.F., Galli, S.J., Elovic, A., Rand, T.H., Gallagher, G.T., Chiang, T., Chou, M.Y., Matossian, K., McBride, J. J. Exp. Med. (1990) [Pubmed]
  36. Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis. Gladue, R.P., Carroll, L.A., Milici, A.J., Scampoli, D.N., Stukenbrok, H.A., Pettipher, E.R., Salter, E.D., Contillo, L., Showell, H.J. J. Exp. Med. (1996) [Pubmed]
  37. Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. Forssmann, U., Uguccioni, M., Loetscher, P., Dahinden, C.A., Langen, H., Thelen, M., Baggiolini, M. J. Exp. Med. (1997) [Pubmed]
 
WikiGenes - Universities