The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PHENAZINE     phenazine

Synonyms: Acridizine, Azophenylene, SureCN9049, AGN-PC-0D1DA5, CHEMBL119870, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of phenazine

 

High impact information on phenazine

  • Destruction of Leishmania mexicana amazonensis amastigotes within macrophages in culture by phenazine methosulfate and other electron carriers [6].
  • Upon reconstitution of the pmf with phenazine methosulfate, glucose, and oxygen, fluorescence declined [7].
  • Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo [8].
  • However, the mutation did not impair the ability of the membrane-bound fumarate reductase complex to function with succinate as substrate, as evidenced by unchanged turnover numbers for phenazine methosulfate and 2,3-dimethoxy-5-methyl-6-pentyl-1,4-benzoquinone (a quinone analogue) reductase activities [9].
  • Addition of phenazine methosulfate, a redox reagent used to generate superoxide, resulted in significant elevation of ODC, which was inhibited by addition of superoxide dismutase but not catalase [10].
 

Chemical compound and disease context of phenazine

 

Biological context of phenazine

 

Anatomical context of phenazine

  • Comparison of wild-type and phenazine-deleted strains of P. aeruginosa showed a highly significant reduction in neutrophil killing by the phenazine-deleted strain [21].
  • Interestingly, lipophilic cations that were efficacious in measuring the transmembrane electrical potential of whole cells appeared to accurately measure artificially generated potentials across vesicle membranes, but were not taken up upon addition of ascorbate/phenazine methosulfate [22].
  • Local suppression of lymphocyte stimulation by phenazine pigments such as pyocyanine may interfere with cellular immune responses that may be necessary for eradication of chronic infection with P. aeruginosa [23].
  • 5. Association of isolated R. rubrum chromatophores with planar phospholipid membrane was found to give a system demonstrating light-induced electric generation as high as 215 mV in the presence of napthoquinone, TMPD (or phenazine methosulfate, PMS), and ascorbate [24].
  • Ascorbate with phenazine methosulfate uncoupled the ATP-dependent proton uptake by chromaffin granules, but had no effect on lysosomes and synaptosomes [25].
 

Associations of phenazine with other chemical compounds

  • However, when the histochemical technique was improved by using 2% glutaraldehyde instead of formalin for fixation and by adding phenazine methosulfate (0.33 mmol/L) to the staining incubation mixture, this method also supported zone 3 predominance of alcohol dehydrogenase [26].
  • (ii) When methylene blue replaces phenazine methosulfate as an oxidation-reduction coupling dye, FAD stimulates the rate of the reaction, whereas FMN inhibits it [27].
  • In spite of substantial enrichment for catalase, the transfected cells (LFN7C/B3) were not resistant to the cytotoxicity of a variety of agents which reduce dioxygen, including paraquat, menadione, adriamycin, phenazine methosulfate, and bleomycin [28].
  • Electron donors such as lactate and ascorbate plus phenazine methosulfate reduced internal cyclic AMP levels in bacterial membrane vesicles which had been preloaded with the cyclic nucleotide [29].
  • The stoichiometry of reducing equivalents per protomer for the complex molybdoflavoprotein xanthine oxidase has been re-examined by reductive titrations with sodium dithionite and anaerobic reoxidation with cytochrome c and phenazine methosulfate of dithionite- or photo-reduced enzyme [30].
 

Gene context of phenazine

  • The two closely linked fdhD and fdhE genes of Escherichia coli are required for the formation of active membrane-bound phenazine methosulfate-linked formate dehydrogenase (FDH-PMS) [31].
  • A redox-cycling agent, phenazine methosulfate, was found to both upregulate TNF-alpha (5.8 +/- 1.0 fold; P = 0.01) and increase the phosphorylation state of p42/44 MAPK (3.1 +/- 0.2 fold; P = 0.01) in PMA-differentiated U-937 cells [32].
  • Other known superoxide-generating agents (plumbagin, menadione, and phenazine methosulfate) were not effective in inducing hmp expression [33].
  • In the present study, we found that the anaerobic growth of the strain disrupted for both the FRDS and OSM1 genes was fully restored by adding the oxidized form of methylene blue or phenazine methosulfate, which non-enzymatically oxidize cellular NADH to NAD(+) [34].
  • Crystal structure of YHI9, the yeast member of the phenazine biosynthesis PhzF enzyme superfamily [35].
 

Analytical, diagnostic and therapeutic context of phenazine

References

  1. The energized membrane and cellular autolysis in Bacillus subtilis. Jolliffe, L.K., Doyle, R.J., Streips, U.N. Cell (1981) [Pubmed]
  2. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Fray, R.G., Throup, J.P., Daykin, M., Wallace, A., Williams, P., Stewart, G.S., Grierson, D. Nat. Biotechnol. (1999) [Pubmed]
  3. Catalase and superoxide dismutase in Escherichia coli. Schwartz, C.E., Krall, J., Norton, L., McKay, K., Kay, D., Lynch, R.E. J. Biol. Chem. (1983) [Pubmed]
  4. Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087. Giddens, S.R., Feng, Y., Mahanty, H.K. Mol. Microbiol. (2002) [Pubmed]
  5. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Lau, G.W., Ran, H., Kong, F., Hassett, D.J., Mavrodi, D. Infect. Immun. (2004) [Pubmed]
  6. Destruction of Leishmania mexicana amazonensis amastigotes within macrophages in culture by phenazine methosulfate and other electron carriers. Rabinovitch, M., Dedet, J.P., Ryter, A., Robineaux, R., Topper, G., Brunet, E. J. Exp. Med. (1982) [Pubmed]
  7. Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Calamita, H.G., Ehringer, W.D., Koch, A.L., Doyle, R.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. Endonuclease IV of Escherichia coli is induced by paraquat. Chan, E., Weiss, B. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  9. Oxidation of reduced menaquinone by the fumarate reductase complex in Escherichia coli requires the hydrophobic FrdD peptide. Cecchini, G., Thompson, C.R., Ackrell, B.A., Westenberg, D.J., Dean, N., Gunsalus, R.P. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  10. Role of asbestos and active oxygen species in activation and expression of ornithine decarboxylase in hamster tracheal epithelial cells. Marsh, J.P., Mossman, B.T. Cancer Res. (1991) [Pubmed]
  11. Reconstitution of quinone reduction and characterization of Escherichia coli fumarate reductase activity. Cecchini, G., Ackrell, B.A., Deshler, J.O., Gunsalus, R.P. J. Biol. Chem. (1986) [Pubmed]
  12. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Dietrich, L.E., Price-Whelan, A., Petersen, A., Whiteley, M., Newman, D.K. Mol. Microbiol. (2006) [Pubmed]
  13. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. McMurry, L.M., Cullinane, J.C., Petrucci, R.E., Levy, S.B. Antimicrob. Agents Chemother. (1981) [Pubmed]
  14. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Wilson, R., Sykes, D.A., Watson, D., Rutman, A., Taylor, G.W., Cole, P.J. Infect. Immun. (1988) [Pubmed]
  15. Hydroxylamine oxidoreductase from Nitrosomonas: inactivation by hydrogen peroxide. Hooper, A.B., Terry, K.R. Biochemistry (1977) [Pubmed]
  16. Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b562-o complex from cells in the early exponential phase of aerobic growth. Kita, K., Konishi, K., Anraku, Y. J. Biol. Chem. (1984) [Pubmed]
  17. The steady state kinetics of photophosphorylation. Selman, B.R., Selman-Reimer, S. J. Biol. Chem. (1981) [Pubmed]
  18. Novel DNA bis-intercalation by MLN944, a potent clinical bisphenazine anticancer drug. Dai, J., Punchihewa, C., Mistry, P., Ooi, A.T., Yang, D. J. Biol. Chem. (2004) [Pubmed]
  19. Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. Short, S.A., Kaback, H.R., Kohn, L.D. J. Biol. Chem. (1975) [Pubmed]
  20. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. Allen, L., Dockrell, D.H., Pattery, T., Lee, D.G., Cornelis, P., Hellewell, P.G., Whyte, M.K. J. Immunol. (2005) [Pubmed]
  21. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. Usher, L.R., Lawson, R.A., Geary, I., Taylor, C.J., Bingle, C.D., Taylor, G.W., Whyte, M.K. J. Immunol. (2002) [Pubmed]
  22. Oxidative phosphorylation by isolated membrane vesicles from Bacillus megaterium and its uncoupler-resistant mutant derivative. Guffanti, A.A., Fuchs, R.T., Krulwich, T.A. J. Biol. Chem. (1983) [Pubmed]
  23. Studies on the mechanism of T cell inhibition by the Pseudomonas aeruginosa phenazine pigment pyocyanine. Nutman, J., Berger, M., Chase, P.A., Dearborn, D.G., Miller, K.M., Waller, R.L., Sorensen, R.U. J. Immunol. (1987) [Pubmed]
  24. Reconstitution of biological molecular generators of electric current. Bacteriochlorophyll and plant chlorophyll complexes. Barsky, E.L., Dancshazy, Z., Drachey, L.A., Il'ina, M.D., Jasaitis, A.A., Kondrashin, A.A., Samuilov, V.D., Skulachev, V.P. J. Biol. Chem. (1976) [Pubmed]
  25. ATP-driven proton fluxes across membranes of secretory organelles. Cidon, S., Ben-David, H., Nelson, N. J. Biol. Chem. (1983) [Pubmed]
  26. Histochemical and immunohistochemical evidence for hepatic zone 3 distribution of alcohol dehydrogenase in rats. Kato, S., Ishii, H., Aiso, S., Yamashita, S., Ito, D., Tsuchiya, M. Hepatology (1990) [Pubmed]
  27. The anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli. Purification and characterization. Schryvers, A., Weiner, J.H. J. Biol. Chem. (1981) [Pubmed]
  28. Cells enriched for catalase are sensitized to the toxicities of bleomycin, adriamycin, and paraquat. Speranza, M.J., Bagley, A.C., Lynch, R.E. J. Biol. Chem. (1993) [Pubmed]
  29. Regulation of intracellular adenosine cyclic 3':5'-monophosphate levels in Escherichia coli and Salmonella typhimurium. Evidence for energy-dependent excretion of the cyclic nucleotide. Saier, M.H., Feucht, B.U., McCaman, M.T. J. Biol. Chem. (1975) [Pubmed]
  30. The presence of a reducible disulfide bond in milk xanthine oxidase. Hille, R., Massey, V. J. Biol. Chem. (1982) [Pubmed]
  31. Identification and expression of the Escherichia coli fdhD and fdhE genes, which are involved in the formation of respiratory formate dehydrogenase. Schlindwein, C., Giordano, G., Santini, C.L., Mandrand, M.A. J. Bacteriol. (1990) [Pubmed]
  32. Signaling by eNOS through a superoxide-dependent p42/44 mitogen-activated protein kinase pathway. Wang, W., Wang, S., Nishanian, E.V., Del Pilar Cintron, A., Wesley, R.A., Danner, R.L. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
  33. Paraquat regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12 is SoxRS independent but modulated by sigma S. Membrillo-Hernández, J., Kim, S.O., Cook, G.M., Poole, R.K. J. Bacteriol. (1997) [Pubmed]
  34. Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae. Enomoto, K., Arikawa, Y., Muratsubaki, H. FEMS Microbiol. Lett. (2002) [Pubmed]
  35. Crystal structure of YHI9, the yeast member of the phenazine biosynthesis PhzF enzyme superfamily. Liger, D., Quevillon-Cheruel, S., Sorel, I., Bremang, M., Blondeau, K., Aboulfath, I., Janin, J., van Tilbeurgh, H., Leulliot, N. Proteins (2005) [Pubmed]
  36. In vitro effect of synthetic pyocyanine on neutrophil superoxide production. Miller, K.M., Dearborn, D.G., Sorensen, R.U. Infect. Immun. (1987) [Pubmed]
  37. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. Sarkisova, S., Patrauchan, M.A., Berglund, D., Nivens, D.E., Franklin, M.J. J. Bacteriol. (2005) [Pubmed]
  38. Glutamine's protection against cellular injury is dependent on heat shock factor-1. Morrison, A.L., Dinges, M., Singleton, K.D., Odoms, K., Wong, H.R., Wischmeyer, P.E. Am. J. Physiol., Cell Physiol. (2006) [Pubmed]
  39. Overexpression, purification and crystallization of PhzA, the first enzyme of the phenazine biosynthesis pathway of Pseudomonas fluorescens 2-79. Ahuja, E.G., Mavrodi, D.V., Thomashow, L.S., Blankenfeldt, W. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  40. Bacterial mutagenicity tests of phenazine methosulphate and three tetrazolium salts. Venitt, S., Crofton-Sleigh, C. Mutat. Res. (1979) [Pubmed]
 
WikiGenes - Universities