The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification of the cyclosporin-binding site in P-glycoprotein.

The binding site of cyclosporin A to P-glycoprotein was characterized by using a multidrug-resistant Chinese hamster ovary cell line. P-glycoprotein photolabeled with diazirine-cyclosporin A analogue was purified by a two-step process involving continuous elution electrophoresis followed by wheat germ agglutinin-agarose precipitation. The cyclosporin A covalently bound to P-glycoprotein and to subsequent proteolytic fragments was detected by Western blot analysis using a monoclonal antibody against cyclosporin A. Proteolytic digestion of purified P-glycoprotein by V8 generated a major fragment of 15 kDa photolabeled by cyclosporin A, while proteolysis of P-glycoprotein photolabeled by [125I]-iodoaryl azidoprazosin generated a major fragment of 7 kDa. Limited proteolysis of cyclosporin A-photolabeled P-glycoprotein with trypsin indicated that the major binding site for cyclosporin A was in the C-terminal half of the protein. This cyclosporin A binding site was further characterized with chemical agents (N-chlorosuccinimide, cyanogen bromide, and 2-nitro-5-thiocyanobenzoate). These three chemical agents established a proteolytic profile of P-glycoprotein for fragments photolabeled with cyclosporin A and for fragments that contained the C494 and C219 epitopes. The smallest fragments generated by these chemical agents include the transmembrane domains (TMs) 10, 11, and 12 of P-glycoprotein. When the fragments generated by these chemical agents are aligned, the region that binds cyclosporin A is reduced to the 953-1007 residues. These combined results suggest that the major binding site of cyclosporin A occurs between the end of TM 11 and the end of TM 12.[1]


  1. Identification of the cyclosporin-binding site in P-glycoprotein. Demeule, M., Laplante, A., Murphy, G.F., Wenger, R.M., Béliveau, R. Biochemistry (1998) [Pubmed]
WikiGenes - Universities