The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase.

The larger isoform of the enzyme glutamate decarboxylase, GAD67, synthesizes >90% of basal levels of gamma-aminobutyric acid (GABA) in the brain. In contrast, the smaller isoform, GAD65, has been implicated in the fine-tuning of inhibitory neurotransmission. Mice deficient in GAD65 exhibit increased anxiety-like responses in both the open field and elevated zero maze assays. Additionally, GAD65-deficient mice have a diminished response to the anxiolytics diazepam and pentobarbital, both of which interact with GABA-A receptors in a GABA-dependent fashion to facilitate GABAergic neurotransmission. Loss of GAD65-generated GABA does not appear to result in compensatory postsynaptic GABA-A receptor changes based on radioligand receptor binding studies, which revealed no change in the postsynaptic GABA-A receptor density. Furthermore, mutant and wild-type animals do not differ in their behavioral response to muscimol, which acts independently of the presence of GABA. We propose that stress-induced GABA release is impaired in GAD65-deficient mice, resulting in increased anxiety-like responses and a diminished response to the acute effects of drugs that facilitate the actions of released GABA.[1]

References

  1. Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Kash, S.F., Tecott, L.H., Hodge, C., Baekkeskov, S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
 
WikiGenes - Universities