The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEMBL466563     5-ethyl-5-pentyl-1,3- diazinane-2,4,6-trione

Synonyms: SureCN918796, AG-D-36659, SureCN4378370, NSC-32305, NSC-125478, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of pentobarbital

  • INTERVENTIONS.--Cardiac arrest was induced by ventricular fibrillation in mechanically ventilated pigs anesthetized with pentobarbital sodium [1].
  • Rats maintained on moderate sodium intake were killed 2 min after the induction of anesthesia with pentobarbital (50 mg/kg i.p.) or by rapid decapitation [2].
  • Acute nonocclusive mesenteric ischemia was produced in dogs anesthetized with pentobarbital by reversible pericardial tamponade, which reduced cardiac output and mesenteric blood flow by approximately 42% and 53%, respectively [3].
  • The present study quantitates myocardial necrosis produced by 40 minutes, 3 hours, or 6 hours of temporary circumflex coronary occlusion (CO) followed by 2 to 4 days of reperfusion, or by 24 or 96 hours of permanent circumflex ligation in pentobarbital anesthetized open chest dogs [4].
  • In the presence of circumflex stenosis, it did not change (12.5 +/- 4.0% pentobarbital, 11.8 +/- 3.6 LAD occlusion vs 13.1 +/- 4.0% control) [5].
 

Psychiatry related information on pentobarbital

 

High impact information on pentobarbital

 

Chemical compound and disease context of pentobarbital

 

Biological context of pentobarbital

 

Anatomical context of pentobarbital

  • Pentobarbital-anesthetized cats were subjected to 1.5 h occlusion of the left anterior descending coronary artery (LAD) and 4.5 h of reperfusion [24].
  • After 7 days of continuous infusion of amino acid-glucose mixture via a gastric or jugular vein catheter, pharmacokinetic parameters were determined after 40 mg/kg of pentobarbital was given orally or into the portal or femoral vein [21].
  • Total area under the pentobarbital plasma concentration-time curve was significantly greater in parenterally nourished animals as compared with enterally alimented animals after oral, portal vein and systemic vein drug administration [21].
  • Nonradioactive microspheres of various sized (mean batch diameters ranging from 6 microns ato 26 microns) were administered to unfasted rabbits under sodium pentobarbital anesthesia by a brief injection into the left ventricle [25].
  • METHODS: Under sodium pentobarbital anesthesia, partial obstruction was produced in the rat by tying a plastic ring around the terminal loop of ileum [26].
 

Associations of pentobarbital with other chemical compounds

 

Gene context of pentobarbital

  • The gstD1 and gstD21 genes responded rapidly to pentobarbital (PB) as changes in mRNA levels were detectable within 30 min of treatment [32].
  • The effects of electrical stimulation of the hypothalamic periventricular nucleus (PE) on vasoactive intestinal polypeptide (VIP)-induced PRL and TRH-stimulated TSH secretion were studied using pentobarbital-anesthetized male rats bearing indwelling cannulae in the right atria [33].
  • Pentobarbital treatment, which inhibits hypothalamic input and the LH surge, prevented the gonadotropin surge-associated increase in GnRH-R mRNA levels in E-primed OVX rats [34].
  • A combined injection of chlorpromazine and morphine followed 75 min later by injection of pentobarbital produced low basal levels of corticosterone and rendered the animals highly sensitive to synthetic CRF but insensitive to the stress of ether or histamine [35].
  • Furthermore, blocking the neuroexcitant effects of CRH (using pentobarbital) abolished the alterations in CRF1 binding and expression [36].
 

Analytical, diagnostic and therapeutic context of pentobarbital

References

  1. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion presssure. Kette, F., Weil, M.H., Gazmuri, R.J. JAMA (1991) [Pubmed]
  2. Mechanism of sodium modulation of glomerular angiotensin receptors in the rat. Bellucci, A., Wilkes, B.M. J. Clin. Invest. (1984) [Pubmed]
  3. Comparison of an intravenous selective mesenteric vasodilator with intraarterial papaverine in experimental nonocclusive mesenteric ischemia. MacCannell, K.L. Gastroenterology (1986) [Pubmed]
  4. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Reimer, K.A., Lowe, J.E., Rasmussen, M.M., Jennings, R.B. Circulation (1977) [Pubmed]
  5. Mechanisms of remote myocardial dysfunction during coronary artery occlusion in the presence of multivessel disease. Homans, D.C., Sublett, E., Elsperger, K.J., Schwartz, J.S., Bache, R.J. Circulation (1986) [Pubmed]
  6. Differential effects of diazepam and pentobarbital on mood and behavior. Griffiths, R.R., Bigelow, G.E., Liebson, I. Arch. Gen. Psychiatry (1983) [Pubmed]
  7. Gene knockout of the alpha6 subunit of the gamma-aminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Homanics, G.E., Ferguson, C., Quinlan, J.J., Daggett, J., Snyder, K., Lagenaur, C., Mi, Z.P., Wang, X.H., Grayson, D.R., Firestone, L.L. Mol. Pharmacol. (1997) [Pubmed]
  8. Huntington's disease: increased number and altered regulation of benzodiazepine receptor complexes in frontal cerebral cortex. Trifiletti, R.R., Snowman, A.M., Whitehouse, P.J., Marcus, K.A., Snyder, S.H. Neurology (1987) [Pubmed]
  9. Synthesis and central nervous system actions of thyrotropin-releasing hormone analogues containing a dihydroorotic acid moiety. Suzuki, M., Sugano, H., Matsumoto, K., Yamamura, M., Ishida, R. J. Med. Chem. (1990) [Pubmed]
  10. Thyrotropin-releasing hormone: central site of action in antagonism of pentobarbital narcosis. Kalivas, P.W., Horita, A. Nature (1979) [Pubmed]
  11. Pentobarbital: differential postsynaptic actions on sympathetic ganglion cells. Nicoll, R.A. Science (1978) [Pubmed]
  12. Chronotypic action of theophylline and of pentobarbital as circadian zeitgebers in the rat. Ehret, C.F., Potter, V.R., Dobra, K.W. Science (1975) [Pubmed]
  13. Inhibition of interleukin-1-alpha-induced nitric oxide synthase in vascular smooth muscle and full reversal of interleukin-1-alpha-induced hypotension by N omega-amino-L-arginine. Kilbourn, R.G., Gross, S.S., Lodato, R.F., Adams, J., Levi, R., Miller, L.L., Lachman, L.B., Griffith, O.W. J. Natl. Cancer Inst. (1992) [Pubmed]
  14. GABA transporters and GABAC-like receptors on catfish cone- but not rod-driven horizontal cells. Dong, C.J., Picaud, S.A., Werblin, F.S. J. Neurosci. (1994) [Pubmed]
  15. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway. Newgard, C.B., Moore, S.V., Foster, D.W., McGarry, J.D. J. Biol. Chem. (1984) [Pubmed]
  16. Influence of pentobarbital and chloralose on metabolic and hemodynamic changes in liver ischemia. Nordström, G., Winsö, O., Biber, B., Hasselgren, P.O. Ann. Surg. (1990) [Pubmed]
  17. Apparent quinidine-induced digoxin toxicity after withdrawal of pentobarbital: a case of sequential drug interactions. Chapron, D.J., Mumford, D., Pitegoff, G.I. Arch. Intern. Med. (1979) [Pubmed]
  18. Barbiturates decrease voltage-dependent calcium conductance of mouse neurons in dissociated cell culture. Werz, M.A., Macdonald, R.L. Mol. Pharmacol. (1985) [Pubmed]
  19. Mechanism of postarrhythmic renal vasoconstriction in the anesthetized dog. Katholi, R.E., Oparil, S., Urthaler, F., James, T.N. J. Clin. Invest. (1979) [Pubmed]
  20. Effects of 2-camphanone on canine portal vein blood flow and rat smooth muscle. Xie, J.M., Greenberg, S.S., Longenecker, G. Gastroenterology (1992) [Pubmed]
  21. Alterations in pentobarbital pharmacokinetics in response to parenteral and enteral alimentation in the rat. Knodell, R.G., Spector, M.H., Brooks, D.A., Keller, F.X., Kyner, W.T. Gastroenterology (1980) [Pubmed]
  22. Effect of ethanol on jejunal regional blood flow in the rabbit. Buell, M.G., Beck, I.T. Gastroenterology (1983) [Pubmed]
  23. Drug metabolism by rat and human hepatic microsomes in response to interaction with H2-receptor antagonists. Knodell, R.G., Holtzman, J.L., Crankshaw, D.L., Steele, N.M., Stanley, L.N. Gastroenterology (1982) [Pubmed]
  24. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. Ma, X.L., Tsao, P.S., Lefer, A.M. J. Clin. Invest. (1991) [Pubmed]
  25. Blood flow to the rabbit pancreas with special reference to the islets of Langerhans. Lifson, N., Kramlinger, K.G., Mayrand, R.R., Lender, E.J. Gastroenterology (1980) [Pubmed]
  26. Hypertrophy of rat sensory ganglion neurons following intestinal obstruction. Williams, T.H., Zhang, M.Q., Jew, J.Y. Gastroenterology (1993) [Pubmed]
  27. Regulation of angiotensin II receptors in the rat adrenal cortex by dietary electrolytes. Douglas, J., Catt, K.J. J. Clin. Invest. (1976) [Pubmed]
  28. Influence of acute myocardial depression on left ventricular stiffness and its elastic and viscous components. Templeton, G.H., Wildenthal, K., Willerson, J.T., Mitchell, J.H. J. Clin. Invest. (1975) [Pubmed]
  29. Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Kash, S.F., Tecott, L.H., Hodge, C., Baekkeskov, S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  30. Effect of CP-96,345, a nonpeptide substance P receptor antagonist, on salivation in rats. Snider, R.M., Longo, K.P., Drozda, S.E., Lowe, J.A., Leeman, S.E. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  31. Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Pinna, G., Costa, E., Guidotti, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  32. Pentobarbital-induced changes in Drosophila glutathione S-transferase D21 mRNA stability. Tang, A.H., Tu, C.P. J. Biol. Chem. (1995) [Pubmed]
  33. Evidence for a synergistic effect of somatostatin on vasoactive intestinal polypeptide-induced prolactin release in the rat: comparison with its effect on thyrotropin (TSH)-releasing hormone-stimulated TSH release. Michalkiewicz, M., Suzuki, M., Kato, M. Endocrinology (1987) [Pubmed]
  34. Roles of estrogen, progesterone, and gonadotropin-releasing hormone (GnRH) in the control of pituitary GnRH receptor gene expression at the time of the preovulatory gonadotropin surges. Bauer-Dantoin, A.C., Weiss, J., Jameson, J.L. Endocrinology (1995) [Pubmed]
  35. Interaction of arginine vasopressin and corticotropin releasing factor demonstrated with an improved bioassay. Graf, M.V., Kastin, A.J., Fischman, A.J. Proc. Soc. Exp. Biol. Med. (1985) [Pubmed]
  36. Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Brunson, K.L., Grigoriadis, D.E., Lorang, M.T., Baram, T.Z. Exp. Neurol. (2002) [Pubmed]
  37. Pentobarbital: dual actions to increase brain benzodiazepine receptor affinity. Skolnick, P., Moncada, V., Barker, J.L., Paul, S.M. Science (1981) [Pubmed]
  38. Combined adenosine and lidocaine administration limits myocardial reperfusion injury. Homeister, J.W., Hoff, P.T., Fletcher, D.D., Lucchesi, B.R. Circulation (1990) [Pubmed]
  39. Failure of sodium bicarbonate to improve resuscitation from ventricular fibrillation in dogs. Guerci, A.D., Chandra, N., Johnson, E., Rayburn, B., Wurmb, E., Tsitlik, J., Halperin, H.R., Siu, C., Weisfeldt, M.L. Circulation (1986) [Pubmed]
  40. Effect of epinephrine on cerebral and myocardial perfusion in an infant animal preparation of cardiopulmonary resuscitation. Schleien, C.L., Dean, J.M., Koehler, R.C., Michael, J.R., Chantarojanasiri, T., Traystman, R., Rogers, M.C. Circulation (1986) [Pubmed]
 
WikiGenes - Universities