The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ampD  -  N-acetyl-anhydromuranmyl-L-alanine amidase

Escherichia coli CFT073

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ampD

  • Escherichia coli JRG582 is an ampD ampE deletion derivative of strain HfrH and accordingly it is derepressed for expression of the cloned inducible beta-lactamase gene of Citrobacter freundii, carried on plasmid pNU305 [1].
  • Cells lacking either AmpG or AmpD lose up to 40% of their peptidoglycan per generation, whereas Escherichia coli normally suffers minimal losses and instead recycles 40 or 50% of the tripeptide, L-alanyl-D-glutamyl-meso-diaminopimelic acid, from its peptidoglycan each generation [2].

High impact information on ampD

  • In contrast, the ampD mutant accumulates a novel cell wall muropeptide, 1,6-anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid (anhMurNAc-tripeptide), in its cytoplasm [2].
  • This work suggests that AmpG is the permease for a large muropeptide and AmpD is a novel cytosolic N-acetylmuramyl-L-alanine amidase that cleaves anhMurNAc-tripeptide to release tripeptide, which is then recycled [2].
  • The inducible phenotype was dependent on the E. coli ampD and ampG gene products [3].


WikiGenes - Universities