The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification, cloning and expression of rabbit vascular smooth muscle Kv1.5 and comparison with native delayed rectifier K+ current.

1. The molecular basis of voltage-gated, delayed rectifier K+ ( KDR) channels in vascular smooth muscle cells is poorly defined. In this study we employed (i) an antibody against Kv1.5 and (ii) a cDNA clone encoding Kv1.5 derived from rabbit portal vein (RPV) to demonstrate Kv1.5 expression in RPV and to compare the properties of RPVKv1.5 expressed in mammalian cells with those of native RPV KDR current. 2. Expression of Kv1.5 channel protein in RPV was demonstrated by (i) immunocytolocalization of an antibody raised against a C-terminal epitope of mouse cardiac Kv1.5 in permeabilized, freshly isolated RPV smooth muscle cells and (ii) isolation of a cDNA clone encoding RPVKv1.5 by reverse transcription-polymerase chain reaction (RT-PCR) using mRNA derived from endothelium-denuded and adventitia-free RPV. 3. RPVKv1.5 cDNA was expressed in mammalian L cells and human embryonic kidney (HEK293) cells and the properties of the expressed channels compared with those of native KDR channels of freshly dispersed myocytes under identical conditions. 4. The kinetics and voltage dependence of activation of L cell-expressed RPVKv1.5 and native KDR current were identical, as were the kinetics of recovery from inactivation and single channel conductance. In contrast, there was little similarity between HEK293 cell-expressed RPVKv1.5 and native KDR current. 5. Inactivation occurred with the same voltage for half-maximal availability, but the kinetics and slope constant for the voltage dependence of inactivation for L cell-expressed RPVKv1.5 and the native current were different: slow time constants were 6.5 +/- 0.6 and 3.5 +/- 0.4 s and slope factors were 4.7 +/- 0.2 and 7.0 +/- 0.8 mV, respectively. 6. This study provides immunofluorescence and functional evidence that Kv1.5 alpha-subunits are a component of native KDR channels of vascular smooth muscle cells of RPV. However, the differences in kinetics and voltage sensitivity of inactivation between L cell- and HEK293 cell-expressed channels and native KDR channels provide functional evidence that vascular KDR current is not due to homomultimers of RPV Kv1.5 alone. The channel structure may be more complex, involving heteromultimers and modulatory Kvbeta-subunits, and/or native KDR current may have other components involving Kvalpha-subunits of other families.[1]


WikiGenes - Universities