Leukotriene binding, signaling, and analysis of HIV coreceptor function in mouse and human leukotriene B4 receptor-transfected cells.
The mouse leukotriene B4 receptor (m-BLTR) gene was cloned. Membrane fractions of human embryonic kidney 293 cells stably expressing m-BLTR demonstrated a high affinity and specific binding for leukotriene B4 (LTB4, Kd = 0.24 +/- 0.03 nM). In competition binding experiments, LTB4 was the most potent competitor (Ki = 0.23 +/- 0.05 nM) followed by 20-hydroxy-LTB4 (Ki = 1.1 +/- 0.2 nM) and by 6-trans-12-epi-LTB4 and LTD4 (Ki > 1 microM). In stably transfected Chinese hamster ovary cells, LTB4 inhibited forskolin-activated cAMP production and induced an increase of intracellular calcium, suggesting that this receptor is coupled to Gi- and Go-like proteins. In Xenopus laevis melanophores transiently expressing m-BLTR, LTB4 induced the aggregation of pigment granules, confirming the inhibition of cAMP production induced by LTB4. BLT receptors share significant sequence homology with chemokine receptors ( CCR5 and CXCR4) that act as human immunodeficiency virus (HIV) coreceptors. However, among the 16 HIV/ SIV strains tested, the human BLT receptor did not act as a coreceptor for virus entry into CD4-expressing cells based on infection and cell-cell fusion assays. In 5-lipoxygenase-deficient mice, the absence of leukotriene B4 biosynthesis did not detectably alter m-BLT receptor binding in membranes obtained from glycogen-elicited neutrophils. Isolation of the m-BLTR gene will form the basis of future experiments to elucidate the selective role of LTB4, as opposed to cysteinyl-leukotrienes, in murine models of inflammation.[1]References
- Leukotriene binding, signaling, and analysis of HIV coreceptor function in mouse and human leukotriene B4 receptor-transfected cells. Martin, V., Ronde, P., Unett, D., Wong, A., Hoffman, T.L., Edinger, A.L., Doms, R.W., Funk, C.D. J. Biol. Chem. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg