The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Melanophores

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Melanophores

 

High impact information on Melanophores

  • It is well established that the melanotropins alpha- and beta-MSH are responsible for pigment dispersion in the integumentary melanophore of lower vertebrates and that these molecules are derived from a common precursor protein, proopiocortin, by specific processing within the intermediate lobe [5].
  • In melanophores, Agouti protein has no effect in the absence of alpha-MSH, but its action cannot be explained solely by inhibition of alpha-MSH binding [6].
  • We have used a sensitive bioassay based on Xenopus melanophores to characterize pharmacologic properties of recombinant Agouti protein, and have directly measured its cell-surface binding to mammalian cells by use of an epitope-tagged form (HA-Agouti) that retains biologic activity [6].
  • Melatonin was first isolated from bovine pineal extracts in 1958 by Lerner and his colleagues (2), who used as a marker the capacity of the hormone to aggregate the pigment granules in amphibian melanophores around the cell nucleus [7].
  • We find that cytoplasmic dynein, dynactin, and kinesin II remain on pigment granules during aggregation and dispersion in melanophores, indicating that control of direction is not mediated by a cyclic association of motors with these organelles [8].
 

Chemical compound and disease context of Melanophores

 

Biological context of Melanophores

 

Anatomical context of Melanophores

 

Associations of Melanophores with chemical compounds

  • Gentle lysis of the melanophores resulted in a permeabilized cell model, which, in the absence of exogenous ATP, could undergo multiple rounds of pigment granule aggregation and dispersion when sequentially challenged with epinephrine and cAMP [21].
  • Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988) [22].
  • In addition, no changes were observed for injections of 5'-AMP or cyclic guanosine monophosphate (GMP) through electrodes positioned inside or adjacent to melanophores [17].
  • In the zebrafish D. rerio, alternating light and dark horizontal stripes develop, in part, owing to interactions between melanophores and cells of the xanthophore lineage that depend on the fms receptor tyrosine kinase; zebrafish fms mutants lack xanthophores and have disrupted melanophore stripes [23].
  • In contrast, neural-crest-derived melanophores were abundant even in aneural larvae [24].
 

Gene context of Melanophores

 

Analytical, diagnostic and therapeutic context of Melanophores

References

  1. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A). Reilein, A.R., Tint, I.S., Peunova, N.I., Enikolopov, G.N., Gelfand, V.I. J. Cell Biol. (1998) [Pubmed]
  2. Synthesis and structure-function studies of melanocyte stimulating hormone analogues modified in the 2 and 4(7) positions: comparison of activities on frog skin melanophores and melanoma adenylate cyclase. Hruby, V.J., Sawyer, T.K., Yang, Y.C., Bregman, M.D., Hadley, M.E., Heward, C.B. J. Med. Chem. (1980) [Pubmed]
  3. Melatonin agonists induce phosphoinositide hydrolysis in Xenopus laevis melanophores. Mullins, U.L., Fernandes, P.B., Eison, A.S. Cell. Signal. (1997) [Pubmed]
  4. Melanophore indexing: a new bio-assay technique for the analysis of acute heavy metal (HgCl2) toxicity. Rajan, M.T., Banerjee, T.K. Biomed. Environ. Sci. (1995) [Pubmed]
  5. Characterization of melanin-concentrating hormone in chum salmon pituitaries. Kawauchi, H., Kawazoe, I., Tsubokawa, M., Kishida, M., Baker, B.I. Nature (1983) [Pubmed]
  6. Interaction of Agouti protein with the melanocortin 1 receptor in vitro and in vivo. Ollmann, M.M., Lamoreux, M.L., Wilson, B.D., Barsh, G.S. Genes Dev. (1998) [Pubmed]
  7. The pharmacology of the pineal gland. Minneman, K.P., Wurtman, R.J. Annu. Rev. Pharmacol. Toxicol. (1976) [Pubmed]
  8. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport. Reese, E.L., Haimo, L.T. J. Cell Biol. (2000) [Pubmed]
  9. Pertussis toxin sensitive photoaggregation of pigment in isolated Xenopus tail-fin melanophores. Rollag, M.D. Photochem. Photobiol. (1993) [Pubmed]
  10. The melanophore aggregating response of isolated fish scales: a very rapid and sensitive diagnosis of whooping cough. Karlsson, J.O., Andersson, R.G., Askelöf, P., Elwing, H., Granström, M., Grundström, N., Lundström, I., Ohman, L. FEMS Microbiol. Lett. (1991) [Pubmed]
  11. Biological actions of melanocyte-stimulating hormone. Hadley, M.E., Heward, C.B., Hruby, V.J., Sawyer, T.K., Yang, Y.C. Ciba Found. Symp. (1981) [Pubmed]
  12. Down-regulation of melanocortin receptor signaling mediated by the amino terminus of Agouti protein in Xenopus melanophores. Ollmann, M.M., Barsh, G.S. J. Biol. Chem. (1999) [Pubmed]
  13. Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores. Karne, S., Jayawickreme, C.K., Lerner, M.R. J. Biol. Chem. (1993) [Pubmed]
  14. Transcription factor Ap-2alpha is necessary for development of embryonic melanophores, autonomic neurons and pharyngeal skeleton in zebrafish. O'Brien, E.K., d'Alençon, C., Bonde, G., Li, W., Schoenebeck, J., Allende, M.L., Gelb, B.D., Yelon, D., Eisen, J.S., Cornell, R.A. Dev. Biol. (2004) [Pubmed]
  15. Use of constitutive G protein-coupled receptor activity for drug discovery. Chen, G., Way, J., Armour, S., Watson, C., Queen, K., Jayawickreme, C.K., Chen, W.J., Kenakin, T. Mol. Pharmacol. (2000) [Pubmed]
  16. Desensitization of pigment granule aggregation in Xenopus leavis melanophores: melatonin degradation rather than receptor down-regulation is responsible. Teh, M.T., Sugden, D. J. Neurochem. (2002) [Pubmed]
  17. Iontophoretic release of cyclic AMP and dispersion of melanosomes within a single melanophore. Geschwind, I.I., Horowitz, J.M., Mikuckis, G.M., Dewey, R.D. J. Cell Biol. (1977) [Pubmed]
  18. Intracellular actin-based transport: how far you go depends on how often you switch. Snider, J., Lin, F., Zahedi, N., Rodionov, V., Yu, C.C., Gross, S.P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  19. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L., Raible, D.W. Development (1999) [Pubmed]
  20. Vimentin intermediate filaments in fish melanophores. Gyoeva, F.K., Leonova, E.V., Rodionov, V.I., Gelfand, V.I. J. Cell. Sci. (1987) [Pubmed]
  21. Reactivated melanophore motility: differential regulation and nucleotide requirements of bidirectional pigment granule transport. Rozdzial, M.M., Haimo, L.T. J. Cell Biol. (1986) [Pubmed]
  22. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores. Kotz, K.J., McNiven, M.A. J. Cell Biol. (1994) [Pubmed]
  23. Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus. Quigley, I.K., Manuel, J.L., Roberts, R.A., Nuckels, R.J., Herrington, E.R., MacDonald, E.L., Parichy, D.M. Development (2005) [Pubmed]
  24. Retarded gastrulation and altered subsequent development of neural tissues in heparin-injected Xenopus embryos. Mitani, S. Development (1989) [Pubmed]
  25. Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Elworthy, S., Lister, J.A., Carney, T.J., Raible, D.W., Kelsh, R.N. Development (2003) [Pubmed]
  26. Essential role for puma in development of postembryonic neural crest-derived cell lineages in zebrafish. Parichy, D.M., Turner, J.M., Parker, N.B. Dev. Biol. (2003) [Pubmed]
  27. Different structural requirements for melanin-concentrating hormone (MCH) interacting with rat MCH-R1 (SLC-1) and mouse B16 cell MCH-R. Schlumberger, S.E., Saito, Y., Giller, T., Hintermann, E., Tanner, H., Jäggin, V., Zumsteg, U., Civelli, O., Eberle, A.N. J. Recept. Signal Transduct. Res. (2003) [Pubmed]
  28. Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. Blackshaw, S., Snyder, S.H. J. Neurosci. (1997) [Pubmed]
  29. Stereo high voltage electron microscopy of melanophores. Matrix transformations during pigment movements and the effects of cold and colchicine. Schliwa, M. Exp. Cell Res. (1979) [Pubmed]
  30. Cellular plasticity among axolotl neural crest-derived pigment cell lineages. Thibaudeau, G., Holder, S. Pigment Cell Res. (1998) [Pubmed]
 
WikiGenes - Universities