Concerted expression of BK virus large T- and small t-antigens strongly enhances oestrogen receptor-mediated transcription.
Previous studies have shown that the human polyomavirus BK (BKV) genome contains an oestrogen response element (ERE). This isolated element binds its cognate receptor in vitro and can mediate 17beta-oestradiol-induced gene expression when linked to a heterologous promoter. The roles of the ERE- and the AP-1-binding sites in oestrogen receptor-directed transcription from the complete BKV promoter/enhancer (Dunlop strain) have been examined and the effects of the general co-activator CBP and large T- and small t-antigens on oestrogen receptor-mediated transcription have been investigated. A constitutive activated oestrogen receptor stimulated BKV promoter activity in HeLa cells. Mutations in either the ERE- or the AP-1-binding sites did not impair oestrogen receptor-induced activation of the BKV Dunlop promoter, while mutations in both binding motifs almost completely abolished oestrogen receptor-induced transcription. Simultaneous expression of large T- and small t-antigens strongly activated oestrogen receptor-mediated transcription. When expressed separately, only large T-antigen moderately stimulated oestrogen receptor-mediated transcription. The stimulatory effect of large T-antigen on the activity of the oestrogen receptor is probably indirect because no physical interaction between the two proteins was detected in a two-hybrid assay. Large T-antigen abrogated the synergistic effect on transcription between this nuclear receptor and the general co-activator CBP. The findings that the BKV early proteins amplify oestrogen receptor-mediated transcription may have important biological implications in individuals with raised oestrogen concentrations.[1]References
- Concerted expression of BK virus large T- and small t-antigens strongly enhances oestrogen receptor-mediated transcription. Moens, U., Van Ghelue, M., Johansen, B., Seternes, O.M. J. Gen. Virol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg