The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction.

Aspergillus nidulans utilizes phenylacetate as a carbon source via homogentisate, which is degraded to fumarate and acetoacetate. Mutational evidence strongly suggested that phenylacetate is converted to homogentisate through two sequential hydroxylating reactions in positions 2 and 5 of the aromatic ring. Using cDNA substraction techniques, we have characterized a gene, denoted phacA, whose transcription is strongly induced by phenylacetate and which putatively encodes a cytochrome P450 protein. A disrupted phacA strain does not grow on phenylacetate but grows on 2-hydroxy- or 2, 5-dihydroxyphenylacetate. Microsomal extracts of the disrupted strain are deficient in the NADPH-dependent conversion of phenylacetate to 2-hydroxyphenylacetate. We conclude that PhacA catalyzes the ortho-hydroxylation of phenylacetate, the first step of A. nidulans phenylacetate catabolism. The involvement of a P450 enzyme in the ortho-hydroxylation of a monoaromatic compound has no precedent. In addition, PhacA shows substantial sequence divergence with known cytochromes P450 and defines a new family of these enzymes, suggesting that saprophytic fungi may represent a source of novel cytochromes P450. Phenylacetate is a precursor for benzylpenicillin production. phacA disruption increases penicillin production 3-5-fold, indicating that catabolism competes with antibiotic biosynthesis for phenylacetate and strongly suggesting strategies for Penicillium chrysogenum strain improvement by reverse genetics.[1]

References

 
WikiGenes - Universities