The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

diacetate     3-oxobutanoic acid

Synonyms: oxobutyrate, diacetic acid, AG-C-92468, CHEBI:15344, HMDB00060, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of oxobutyrate


Psychiatry related information on oxobutyrate


High impact information on oxobutyrate

  • Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation [7].
  • The oxidation of acetoacetate by isolated rat heart mitochondria resulted in depressed state 3 respiration as well as in a decrease in [CoASH] [8].
  • Whereas hearts perfused with either acetoacetate or glucose were similar with respect to their function for the first 20 min, changes in tissue metabolites were already observed within 5 min of perfusion at near-physiological workloads [9].
  • After 60 min of perfusion, hearts utilizing acetoacetate exhibited lower systolic and diastolic pressures and lower cardiac outputs [9].
  • Concomitantly, fasting resulted in a decline (day 1 vs. day 5) in serum concentrations of somatomedin C (1.31 +/- 0.22 vs. 0.77 +/- 0.18 U/ml) and glucose (4.9 +/- 0.2 vs. 3.2 +/- 0.2 mmol/liter), and a marked rise in free fatty acid (0.43 +/- 0.12 vs. 1.55 +/- 0.35 mmol/liter) and acetoacetate (35 +/- 6 vs. 507 +/- 80 nmol/liter) [10].

Chemical compound and disease context of oxobutyrate


Biological context of oxobutyrate

  • Under particular circumstances like lactation and fasting, the blood-borne monocarboxylates acetoacetate, beta-hydroxybutyrate, and lactate represent significant energy substrates for the brain [16].
  • The carboxylation of acetone was coupled to the hydrolysis of ATP and formation of 1 mol AMP and 2 mol inorganic phosphate per mol acetoacetate formed [3].
  • We devised a procedure for determining, in a perfused liver system, the first-order rate constant for the decarboxylation of acetoacetate (0.29 +/- 0.09 h-1, S.E., n = 8) [17].
  • We conclude that in STZ-D, ketosis does not stimulate hepatic lipogenesis via cytosolic activation of acetoacetate [18].
  • (c) The interaction of the terminal CH3CO group of acetoacetate with the active site causes a 200,000-fold increase in kappacat/Km, corresponding to a decrease in delta G++ OF 7.2 kcal/mol compared with an unsubstituted acid of the same pK [19].

Anatomical context of oxobutyrate


Associations of oxobutyrate with other chemical compounds


Gene context of oxobutyrate


Analytical, diagnostic and therapeutic context of oxobutyrate


  1. Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts. Manabe, S., Sassa, S., Kappas, A. J. Exp. Med. (1985) [Pubmed]
  2. Quantitative cholescintigraphy in the assessment of choledochoduodenal bile flow. Cicala, M., Scopinaro, F., Corazziari, E., Vignoni, A., Viscardi, A., Habib, F.I., Torsoli, A. Gastroenterology (1991) [Pubmed]
  3. Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Sluis, M.K., Ensign, S.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  4. Ketone-body metabolism in glioma and neuroblastoma cells. Patel, M.S., Russell, J.J., Gershman, H. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  5. Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats. Sauer, L.A., Dauchy, R.T. Cancer Res. (1983) [Pubmed]
  6. Changes in certain metabolic parameters in horses associated with food deprivation and endurance exercise. Rose, R.J., Sampson, D. Res. Vet. Sci. (1982) [Pubmed]
  7. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation. Russell, R.R., Cline, G.W., Guthrie, P.H., Goodwin, G.W., Shulman, G.I., Taegtmeyer, H. J. Clin. Invest. (1997) [Pubmed]
  8. Coenzyme A sequestration in rat hearts oxidizing ketone bodies. Russell, R.R., Taegtmeyer, H. J. Clin. Invest. (1992) [Pubmed]
  9. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. Russell, R.R., Taegtmeyer, H. J. Clin. Invest. (1991) [Pubmed]
  10. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. Ho, K.Y., Veldhuis, J.D., Johnson, M.L., Furlanetto, R., Evans, W.S., Alberti, K.G., Thorner, M.O. J. Clin. Invest. (1988) [Pubmed]
  11. MDL 29311. Antioxidant with marked lipid- and glucose-lowering activity in diabetic rats and mice. Johnson, M.B., Heineke, E.W., Rhinehart, B.L., Sheetz, M.J., Barnhart, R.L., Robinson, K.M. Diabetes (1993) [Pubmed]
  12. Mevalonate utilization in Pseudomonas sp. M. Purification and characterization of an inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase. Gill, J.F., Beach, M.J., Rodwell, V.W. J. Biol. Chem. (1985) [Pubmed]
  13. The role of the kidney in the removal of ketone bodies under different acid-base status of the rat. Angielski, S., Lukowicz, J. Am. J. Clin. Nutr. (1978) [Pubmed]
  14. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Jain, S.K., Kannan, K., Lim, G., Matthews-Greer, J., McVie, R., Bocchini, J.A. Diabetes Care (2003) [Pubmed]
  15. Structural basis for stereoselectivity in the (R)- and (S)-hydroxypropylthioethanesulfonate dehydrogenases. Krishnakumar, A.M., Nocek, B.P., Clark, D.D., Ensign, S.A., Peters, J.W. Biochemistry (2006) [Pubmed]
  16. Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Pellerin, L., Pellegri, G., Martin, J.L., Magistretti, P.J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  17. Production of acetone and conversion of acetone to acetate in the perfused rat liver. Gavino, V.C., Somma, J., Philbert, L., David, F., Garneau, M., Bélair, J., Brunengraber, H. J. Biol. Chem. (1987) [Pubmed]
  18. Lipogenesis from ketone bodies in perfused livers from streptozocin-induced diabetic rats. Freed, L.E., Endemann, G., Tomera, J.F., Gavino, V.C., Brunengraber, H. Diabetes (1988) [Pubmed]
  19. Mechanism and specificity of succinyl-CoA:3-ketoacid coenzyme A transferase. White, H., Jencks, W.P. J. Biol. Chem. (1976) [Pubmed]
  20. Utilization of nutrients by isolated epithelial cells of the rat colon. Roediger, W.E. Gastroenterology (1982) [Pubmed]
  21. Insulin signaling in the transcriptional and posttranscriptional regulation of CYP2E1 expression. Woodcroft, K.J., Hafner, M.S., Novak, R.F. Hepatology (2002) [Pubmed]
  22. Acetoacetate coenzyme A transferase activity in rat hepatomas. Fenselau, A., Wallis, K., Morris, H.P. Cancer Res. (1975) [Pubmed]
  23. Pyruvate and acetoacetate transport in mitochondria. A reappraisal. Pande, S.V., Parvin, R. J. Biol. Chem. (1978) [Pubmed]
  24. Hyperketonemia increases tumor necrosis factor-alpha secretion in cultured U937 monocytes and Type 1 diabetic patients and is apparently mediated by oxidative stress and cAMP deficiency. Jain, S.K., Kannan, K., Lim, G., McVie, R., Bocchini, J.A. Diabetes (2002) [Pubmed]
  25. Significance of blood ketone body ratio as an indicator of hepatic cellular energy status in jaundiced rabbits. Tanaka, J., Ozawa, K., Tobe, T. Gastroenterology (1979) [Pubmed]
  26. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Allen, J.R., Clark, D.D., Krum, J.G., Ensign, S.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  27. Metabolism of forearm tissues in man. Studies with glucagon. Pozefsky, T., Tancredi, R.G., Moxley, R.T., Dupre, J., Tobin, J.D. Diabetes (1976) [Pubmed]
  28. The regulation of acetoacetyl-CoA synthetase activity by modulators of cholesterol synthesis in vivo and the utilization of acetoacetate for cholesterogenesis. Bergstrom, J.D., Wong, G.A., Edwards, P.A., Edmond, J. J. Biol. Chem. (1984) [Pubmed]
  29. A survey of enzymes which generate or use acetoacetyl thioesters in rat liver. Aragón, J.J., Lowenstein, J.M. J. Biol. Chem. (1983) [Pubmed]
  30. Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1. Uehara, Y., Engel, T., Li, Z., Goepfert, C., Rust, S., Zhou, X., Langer, C., Schachtrup, C., Wiekowski, J., Lorkowski, S., Assmann, G., von Eckardstein, A. Diabetes (2002) [Pubmed]
  31. Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes: role of oxidative stress. Abdelmegeed, M.A., Kim, S.K., Woodcroft, K.J., Novak, R.F. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
  32. Failure of glucagon to stimulate ketone body production during acute insulin deficiency or insulin replacement in man. Sonnenberg, G.E., Stauffacher, W., Keller, U. Diabetologia (1982) [Pubmed]
  33. Glucose uptake, lactate release, ketone body turnover, metabolic micromilieu, and pH distributions in human breast cancer xenografts in nude rats. Kallinowski, F., Vaupel, P., Runkel, S., Berg, G., Fortmeyer, H.P., Baessler, K.H., Wagner, K., Mueller-Klieser, W., Walenta, S. Cancer Res. (1988) [Pubmed]
  34. Determination of human ketone body kinetics using stable-isotope labelled tracers. Beylot, M., Beaufrère, B., Normand, S., Riou, J.P., Cohen, R., Mornex, R. Diabetologia (1986) [Pubmed]
  35. The role of growth hormone and cortisone on glucose and gluconeogenic substrate regulation in fasted hypopituitary children. Haymond, M.W., Karl, I., Weldon, V.V., Pagliara, A.S. J. Clin. Endocrinol. Metab. (1976) [Pubmed]
  36. Arterial ketone body ratio as a possible indicator for liver transplantation in fulminant hepatic failure. Saibara, T., Onishi, S., Sone, J., Yamamoto, N., Shimahara, Y., Mori, K., Ozawa, K., Yamamoto, Y. Transplantation (1991) [Pubmed]
  37. Effect of ischaemic limb injury on the rates of metabolism of ketone bodies in starved rats. Barton, R.N. Biochem. J. (1976) [Pubmed]
WikiGenes - Universities