The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AG-G-73393     3,3-dimethyl-7-oxo-6-(2...

Synonyms: SureCN2109546, NSC-11964, NSC-193396, Oprea1_713794, Oprea1_861345, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Penicillin

 

High impact information on Penicillin

  • INTERPRETATION: For children with severe pneumonia in less-developed countries the probability of a good outcome is similar if treated with chloramphenicol or with the combination of benzylpenicillin and gentamicin [6].
  • Chloramphenicol versus benzylpenicillin and gentamicin for the treatment of severe pneumonia in children in Papua New Guinea: a randomised trial [6].
  • INTERPRETATION: We suggest that tuberculosis is a sufficiently common cause of acute pneumonia in Kenyan adults to justify routine sputum culture, and that treatment with benzylpenicillin remains appropriate for clinical failure due to M. tuberculosis, intermediate-resistant pneumococci, and other bacterial pathogens [7].
  • This appears to be the first reported case where a point mutation leads to a change in enzyme mechanism resulting in a substantially altered product, effectively changing the product specificity of beta-lactamase into that of D-Ala-D-Ala-carboxypeptidase interacting with benzylpenicillin [8].
  • Null mutations in dsbB conferred pleiotropic phenotypes such as sensitivity to benzylpenicillin and inability to support plaque formation of filamentous phages, and they were shown to severely affect disulfide bond oxidation of secreted proteins such as OmpA and beta-lactamase [9].
 

Chemical compound and disease context of Penicillin

 

Biological context of Penicillin

 

Anatomical context of Penicillin

 

Associations of Penicillin with other chemical compounds

  • 5. The Vmax changed with pH in a bell-shaped curve in the case of benzylpenicillin, but the Vmax for cloxacillin changed only within a small range [23].
  • It is characterized by a high beta-lactam-binding activity (second order rate constant for the acylation of the active site serine by benzylpenicillin: k2/K = 300 mm(-1) s(-1)) [24].
  • The refolded PBP3** bound benzylpenicillin in a 1 to 1 molar ratio, was highly sensitive to aztreonam and showed the same degree of thermostability, in terms of penicillin-binding capacity, as the parent, membrane-bound PBP3, suggesting that protein refolding occurred with formation of the correct intramolecular interactions [25].
  • METHODS: We used skin tests with penicilloylpolylysine, minor determinant mixture, benzylpenicillin, ampicillin, and amoxicillin, as well as patch tests with the last 3 drugs [26].
  • Covalent complexes with benzylpenicillin and oxacillin provide evidence that serine acylation does not entail significant structural changes, thus supporting the hypothesis that additional extracellular segments of MecR1 are involved in signal transmission [27].
 

Gene context of Penicillin

 

Analytical, diagnostic and therapeutic context of Penicillin

References

  1. Fragmentation of benzylpenicillin after interaction with the exocellular DD-carboxypeptidase-transpeptidases of Streptomyces R61 and R39. Frere, J., Ghuysen, J., Degelaen, J., Loffet, A., Perkins, H.R. Nature (1975) [Pubmed]
  2. Identification of the lethal target of benzylpenicillin in Streptococcus faecalis by in vivo penicillin binding studies. Fontana, R., Canepari, P., Satta, G., Coyette, J. Nature (1980) [Pubmed]
  3. Landmark article Aug 12, 1944: Penicillin in the treatment of meningitis. By D.H.Rosenberg and P.A.Arling. Rosenberg, D.H., Arling, P.A. JAMA (1984) [Pubmed]
  4. Landmark perspective: Penicillin and early syphilis. Arnold, H.L. JAMA (1984) [Pubmed]
  5. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. Missiakas, D., Schwager, F., Raina, S. EMBO J. (1995) [Pubmed]
  6. Chloramphenicol versus benzylpenicillin and gentamicin for the treatment of severe pneumonia in children in Papua New Guinea: a randomised trial. Duke, T., Poka, H., Dale, F., Michael, A., Mgone, J., Wal, T. Lancet (2002) [Pubmed]
  7. Aetiology, outcome, and risk factors for mortality among adults with acute pneumonia in Kenya. Scott, J.A., Hall, A.J., Muyodi, C., Lowe, B., Ross, M., Chohan, B., Mandaliya, K., Getambu, E., Gleeson, F., Drobniewski, F., Marsh, K. Lancet (2000) [Pubmed]
  8. A point mutation leads to altered product specificity in beta-lactamase catalysis. Lewis, E.R., Winterberg, K.M., Fink, A.L. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  9. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Missiakas, D., Georgopoulos, C., Raina, S. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. Structural and Functional Analysis of a Conjugated Bile Salt Hydrolase from Bifidobacterium longum Reveals an Evolutionary Relationship with Penicillin V Acylase. Kumar, R.S., Brannigan, J.A., Prabhune, A.A., Pundle, A.V., Dodson, G.G., Dodson, E.J., Suresh, C.G. J. Biol. Chem. (2006) [Pubmed]
  11. Antigen-specific desensitization of patients allergic to penicillin. Sullivan, T.J. J. Allergy Clin. Immunol. (1982) [Pubmed]
  12. Antibiotic prophylaxis with azithromycin or penicillin for childhood-onset neuropsychiatric disorders. Snider, L.A., Lougee, L., Slattery, M., Grant, P., Swedo, S.E. Biol. Psychiatry (2005) [Pubmed]
  13. Dialysis culture enables more accurate determination of MIC of benzylpenicillin for Borrelia burgdorferi than does conventional procedure. Stiernstedt, S.H., Wretlind, B. Antimicrob. Agents Chemother. (1996) [Pubmed]
  14. Quantitative effect of granulocytes on antibiotic treatment of experimental staphylococcal infection. Hoogeterp, J.J., Mattie, H., Krul, A.M., van Furth, R. Antimicrob. Agents Chemother. (1987) [Pubmed]
  15. Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase. Doucet, N., De Wals, P.Y., Pelletier, J.N. J. Biol. Chem. (2004) [Pubmed]
  16. Site-directed mutagenesis of glutamate 166 in two beta-lactamases. Kinetic and molecular modeling studies. Guillaume, G., Vanhove, M., Lamotte-Brasseur, J., Ledent, P., Jamin, M., Joris, B., Frère, J.M. J. Biol. Chem. (1997) [Pubmed]
  17. Inhibition of translocation of beta -lactamase into the yeast endoplasmic reticulum by covalently bound benzylpenicillin. Paunola, E., Qiao, M., Shmelev, A., Makarow, M. J. Biol. Chem. (2001) [Pubmed]
  18. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann, J.C., Hensen, C., Ridder, L., Mulholland, A.J., Höltje, H.D. J. Am. Chem. Soc. (2005) [Pubmed]
  19. The kinetic properties of the carboxy terminal domain of the Bacillus licheniformis 749/I BlaR penicillin-receptor shed a new light on the derepression of beta-lactamase synthesis. Duval, V., Swinnen, M., Lepage, S., Brans, A., Granier, B., Franssen, C., Frère, J.M., Joris, B. Mol. Microbiol. (2003) [Pubmed]
  20. Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. Nakagawa, J., Tamaki, S., Tomioka, S., Matsuhashi, M. J. Biol. Chem. (1984) [Pubmed]
  21. Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Nagata, Y., Kusuhara, H., Endou, H., Sugiyama, Y. Mol. Pharmacol. (2002) [Pubmed]
  22. Benzylpenicillin preparations can evoke a systemic anaphylactic reaction in guinea pigs. Muranaka, M., Suzuki, S., Koizumi, K., Igarashi, H., Okumura, H., Takeda, K., Tadokoro, K., Horiuchi, Y. J. Allergy Clin. Immunol. (1978) [Pubmed]
  23. beta-lactamase from Streptomyces cacaoi. Purification and properties. Ogawara, H., Mantoku, A., Shimada, S. J. Biol. Chem. (1981) [Pubmed]
  24. Crystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins. Sauvage, E., Herman, R., Petrella, S., Duez, C., Bouillenne, F., Frère, J.M., Charlier, P. J. Biol. Chem. (2005) [Pubmed]
  25. Overexpression, solubilization and refolding of a genetically engineered derivative of the penicillin-binding protein 3 of Escherichia coli K12. Belder, J.B., Nguyen-Distèche, M., Houba-Herin, N., Ghuysen, J.M., Maruyama, I.N., Hara, H., Hirota, Y., Inouye, M. Mol. Microbiol. (1988) [Pubmed]
  26. A diagnostic protocol for evaluating nonimmediate reactions to aminopenicillins. Romano, A., Quaratino, D., Di Fonso, M., Papa, G., Venuti, A., Gasbarrini, G. J. Allergy Clin. Immunol. (1999) [Pubmed]
  27. Unbound and acylated structures of the MecR1 extracellular antibiotic-sensor domain provide insights into the signal-transduction system that triggers methicillin resistance. Marrero, A., Mallorquí-Fernández, G., Guevara, T., García-Castellanos, R., Gomis-Rüth, F.X. J. Mol. Biol. (2006) [Pubmed]
  28. A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. Pittman, M.S., Robinson, H.C., Poole, R.K. J. Biol. Chem. (2005) [Pubmed]
  29. SHV-7, a novel cefotaxime-hydrolyzing beta-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Bradford, P.A., Urban, C., Jaiswal, A., Mariano, N., Rasmussen, B.A., Projan, S.J., Rahal, J.J., Bush, K. Antimicrob. Agents Chemother. (1995) [Pubmed]
  30. Benzylpenicillin differentially conjugates to IFN-gamma, TNF-alpha, IL-1beta, IL-4 and IL-13 but selectively reduces IFN-gamma activity. Brooks, B.M., Thomas, A.L., Coleman, J.W. Clin. Exp. Immunol. (2003) [Pubmed]
  31. Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Tahara, H., Shono, M., Kusuhara, H., Kinoshita, H., Fuse, E., Takadate, A., Otagiri, M., Sugiyama, Y. Pharm. Res. (2005) [Pubmed]
  32. Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum. Miñambres, B., Martínez-Blanco, H., Olivera, E.R., García, B., Díez, B., Barredo, J.L., Moreno, M.A., Schleissner, C., Salto, F., Luengo, J.M. J. Biol. Chem. (1996) [Pubmed]
  33. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Lindquist, S., Galleni, M., Lindberg, F., Normark, S. Mol. Microbiol. (1989) [Pubmed]
  34. Immediate allergic reactions to cephalosporins: evaluation of cross-reactivity with a panel of penicillins and cephalosporins. Antunez, C., Blanca-Lopez, N., Torres, M.J., Mayorga, C., Perez-Inestrosa, E., Montañez, M.I., Fernandez, T., Blanca, M. J. Allergy Clin. Immunol. (2006) [Pubmed]
  35. Penicillin-binding proteins of Streptomyces cacaoi, Streptomyces olivaceus, and Streptomyces clavuligerus. Ogawara, H., Horikawa, S. Antimicrob. Agents Chemother. (1980) [Pubmed]
  36. Stability of benzylpenicillin during continuous home intravenous therapy. Vella-Brincat, J.W., Begg, E.J., Gallagher, K., Kirkpatrick, C.M., Zhang, M., Frampton, C., Chambers, S.T. J. Antimicrob. Chemother. (2004) [Pubmed]
 
WikiGenes - Universities