The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Lineage switch in childhood leukemia with monosomy 7 and reverse of lineage switch in severe combined immunodeficient mice.

Morphophenotypic lineage switches occur in a small percentage of those with acute leukemia, and the underlying mechanisms are not clear. In this study, we attempted to induce a lineage switch in acute myelocytic leukemia (AML) with monosomy 7, whose lineage had switched from acute T-lymphocytic leukemia (T-ALL) during chemotherapy, in severe combined immunodeficient (SCID) mice. Although the transplanted myeloid cells were engrafted in SCID mice without cytokine administration, T-ALL developed in SCID mice treated with recombinant human granulocyte-macrophage colony-stimulating factor or recombinant human interleukin 3. Analysis of the nucleotide sequences of the rearranged T-cell receptor gamma-chain (TCR-gamma) gene revealed that this lineage switch resulted from the selection of the T-lineage subclone in SCID mice, which had expanded at onset. In addition, we found that the T-lineage and myeloid cells belonged to the distinct subclones, which were different in TCR-gamma gene rearrangements, but were derived from a common clone with an identical N-ras gene mutation for both subclones. In in vitro cultures, only the myeloid subclone grew; the T-lineage subclone failed to grow even in the presence of recombinant human granulocyte-macrophage colony-stimulating factor or recombinant human interleukin 3. These results suggested that the initial diagnostic T-lymphoid subclone, whose growth was dependent on these cytokines and the hematopoietic microenvironment, emerged from a bipotential T-lymphoid/myeloid leukemic stem cell, and further genetic event(s) induced the myeloid subclone, which grew independently of these cytokines and the microenvironment.[1]

References

  1. Lineage switch in childhood leukemia with monosomy 7 and reverse of lineage switch in severe combined immunodeficient mice. Fujisaki, H., Hara, J., Takai, K., Nakanishi, K., Matsuda, Y., Ohta, H., Osugi, Y., Tokimasa, S., Taniike, M., Hosoi, G., Sako, M., Okada, S. Exp. Hematol. (1999) [Pubmed]
 
WikiGenes - Universities