The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Competitive inhibition of glycylsarcosine transport by enalapril in rabbit renal brush border membrane vesicles: interaction of ACE inhibitors with high-affinity H+/peptide symporter.

PURPOSE: To examine the inhibitory potential of enalapril [and other angiotensin converting enzyme (ACE) inhibitors] on glycylsarcosine (GlySar) transport by the high-affinity renal peptide transporter. METHODS: Studies were performed in rabbit renal brush border membrane vesicles in which the uptake of radiolabeled GlySar was examined in the absence and presence of captopril, enalapril, enalaprilat, fosinopril, lisinopril, quinapril, quinaprilat, ramipril and zofenopril. RESULTS: Kinetic analyses demonstrated that enalapril inhibited the uptake of GlySar in a competitive manner (Ki approximately 6 mM). Fosinopril and zofenopril had the greatest inhibitory potency (IC50 values of 55 and 81 microM, respectively) while the other ACE inhibitors exhibited low-affinity interactions with the renal peptide transporter. With respect to structure-function, ACE inhibitor affinity was strongly correlated with drug lipophilicity (r = 0.944, p < 0.001 for all ACE inhibitors; r = 0.983, p < 0.001 without enalaprilat, quinaprilat and quinapril). CONCLUSIONS: The data suggest that enalapril and GlySar compete for the same substrate-binding site on the high-affinity peptide transporter in kidney, and that ACE inhibitors can interact with the renal carrier and inhibit dipeptide transport.[1]

References

 
WikiGenes - Universities