The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

MK 422     (2R)-1-[(2S)-2-[[(1R)-1- carboxy-3-phenyl...

Synonyms: Enalapril acid, AC1NSFN0, MK 421 diacid, SureCN12737170, UNII-Q508Q118JM, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Enalaprilat anhydrous


Psychiatry related information on Enalaprilat anhydrous


High impact information on Enalaprilat anhydrous

  • After acute blockade of ANG II formation by iv enalaprilat injection in sodium-restricted animals, ANG II produced a 40% decrease in renal blood flow, a level between untreated dietary groups and less than high salt diet [7].
  • The dose required to raise mean blood pressure by 20 mm Hg (PD20) was calculated individually, and the ratio of PD20 during enalaprilat to that during placebo (dose ratio, DR) was used for assessment of the extent of ACE inhibition [8].
  • METHODS AND RESULTS: Twenty patients with HOCM underwent cardiac ACE inhibition with intracoronary (IC) enalaprilat (0.05 mg/min infused into the left anterior descending coronary artery for 15 minutes) followed by circulatory ACE inhibition with 25 mg sublingual (SL) captopril [9].
  • This observation suggests that intrinsic differences exist between quinaprilat and enalaprilat that determine the ability to improve endothelium-mediated vasodilation, ie, their different affinity to tissue ACE [10].
  • Heart rate was not affected by the respective interventions (75+/-11 versus 76+/-13 versus 75+/-10 bpm; P=NS), whereas mean aortic pressure dropped slightly after IC enalaprilat and significantly after SL captopril (90+/-8 versus 85+/-10 versus 74+/-9 mm Hg; P<.05) [9].

Chemical compound and disease context of Enalaprilat anhydrous


Biological context of Enalaprilat anhydrous


Anatomical context of Enalaprilat anhydrous


Associations of Enalaprilat anhydrous with other chemical compounds

  • In the presence of an intravenous infusion of a specific bradykinin antagonist, D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Phe-Thi-Arg.TFA (B5630) (group 4), enalaprilat decreased BP by -28 +/- 4 mm Hg and increased RBF by 82 +/- 24 ml/min (delta RBF, p less than 0.01 vs. group 1).(ABSTRACT TRUNCATED AT 250 WORDS)[21]
  • During a constant intravenous infusion of saralasin (group 2), enalaprilat decreased BP by -7 +/- 3 mm Hg and increased RBF by 84 +/- 7 ml/min (delta BP and delta RBF, p less than 0.01 vs. group 1 by analysis of variance) [21].
  • RESULTS: Before rapid pacing, angiotensin II reduced the slope of PFR (1.16 +/- 0.08 to 0.81 +/- 0.07 ml/min/100 g left ventricular mass per mm Hg; p < 0.01) and increased the perfusion pressure at which coronary flow ceased (zero-flow pressure [P(f) = 0]), whereas enalaprilat did not change either of them [22].
  • This study was performed to determine changes in RIF AngI and AngII concentrations during interstitial administration of ACE inhibitors (enalaprilat and perindoprilat) [23].
  • The BK-induced increases in coronary artery diameter and CBF were significantly reduced (p < 0.01) after pretreatment with NG-monomethyl-L-arginine (200 mumol) and were significantly increased (p < 0.01) after pretreatment with enalaprilat (50 micrograms) [24].

Gene context of Enalaprilat anhydrous


Analytical, diagnostic and therapeutic context of Enalaprilat anhydrous


  1. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). Swedberg, K., Held, P., Kjekshus, J., Rasmussen, K., Rydén, L., Wedel, H. N. Engl. J. Med. (1992) [Pubmed]
  2. Intracoronary angiotensin-converting enzyme inhibition improves diastolic function in patients with hypertensive left ventricular hypertrophy. Haber, H.L., Powers, E.R., Gimple, L.W., Wu, C.C., Subbiah, K., Johnson, W.H., Feldman, M.D. Circulation (1994) [Pubmed]
  3. Effect of acute angiotensin converting enzyme inhibition on left ventricular filling in patients with congestive heart failure. Relation to right ventricular volumes. Konstam, M.A., Kronenberg, M.W., Udelson, J.E., Metherall, J., Dolan, N., Edens, T.R., Howe, D.M., Yusuf, S., Youngblood, M., Toltsis, H. Circulation (1990) [Pubmed]
  4. Placebo-controlled, randomized, double-blind study of intravenous enalaprilat efficacy and safety in acute cardiogenic pulmonary edema. Annane, D., Bellissant, E., Pussard, E., Asmar, R., Lacombe, F., Lanata, E., Madonna, O., Safar, M., Giudicelli, J.F., Gajdos, P. Circulation (1996) [Pubmed]
  5. Intracardiac angiotensin-converting enzyme inhibition improves diastolic function in patients with left ventricular hypertrophy due to aortic stenosis. Friedrich, S.P., Lorell, B.H., Rousseau, M.F., Hayashida, W., Hess, O.M., Douglas, P.S., Gordon, S., Keighley, C.S., Benedict, C., Krayenbuehl, H.P. Circulation (1994) [Pubmed]
  6. An attempt to assess the central action of captopril and enalaprilat. Czarnecka, E., Strzelec, J., Pietrzak, B. Med. Sci. Monit. (2000) [Pubmed]
  7. Regulation of angiotensin II receptor AT1 subtypes in renal afferent arterioles during chronic changes in sodium diet. Ruan, X., Wagner, C., Chatziantoniou, C., Kurtz, A., Arendshorst, W.J. J. Clin. Invest. (1997) [Pubmed]
  8. ACE (I/D) genotype as a predictor of the magnitude and duration of the response to an ACE inhibitor drug (enalaprilat) in humans. Ueda, S., Meredith, P.A., Morton, J.J., Connell, J.M., Elliott, H.L. Circulation (1998) [Pubmed]
  9. Effects of cardiac versus circulatory angiotensin-converting enzyme inhibition on left ventricular diastolic function and coronary blood flow in hypertrophic obstructive cardiomyopathy. Kyriakidis, M., Triposkiadis, F., Dernellis, J., Androulakis, A.E., Mellas, P., Kelepeshis, G.A., Gialafos, J.E. Circulation (1998) [Pubmed]
  10. Differential effects of quinaprilat and enalaprilat on endothelial function of conduit arteries in patients with chronic heart failure. Hornig, B., Arakawa, N., Haussmann, D., Drexler, H. Circulation (1998) [Pubmed]
  11. Comparative systemic and renal effects of dopamine and angiotensin-converting enzyme inhibition with enalaprilat in patients with heart failure. Maskin, C.S., Ocken, S., Chadwick, B., LeJemtel, T.H. Circulation (1985) [Pubmed]
  12. Comparing angiotensin-converting enzyme inhibitor trial results in patients with acute myocardial infarction. Cody, R.J. Arch. Intern. Med. (1994) [Pubmed]
  13. Enalaprilat, a new parenteral angiotensin-converting enzyme inhibitor: rapid changes in systemic and coronary hemodynamics and humoral profile in chronic heart failure. De Marco, T., Daly, P.A., Liu, M., Kayser, S., Parmley, W.W., Chatterjee, K. J. Am. Coll. Cardiol. (1987) [Pubmed]
  14. Blood pressure reduction initiates the antiproteinuric effect of ACE inhibition. Hemmelder, M.H., de Zeeuw, D., Gansevoort, R.T., de Jong, P.E. Kidney Int. (1996) [Pubmed]
  15. Angiotensinergic versus nonangiotensinergic hemodynamic effects of converting enzyme inhibition in patients with chronic heart failure. Assessment by acute renin and converting enzyme inhibition. Kiowski, W., Beermann, J., Rickenbacher, P., Haemmerli, R., Thomas, M., Burkart, F., Meinertz, T. Circulation (1994) [Pubmed]
  16. Direct myocardial and coronary effects of enalaprilat in patients with dilated cardiomyopathy: assessment by a bilateral intracoronary infusion technique. Foult, J.M., Tavolaro, O., Antony, I., Nitenberg, A. Circulation (1988) [Pubmed]
  17. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells. Minshall, R.D., Tan, F., Nakamura, F., Rabito, S.F., Becker, R.P., Marcic, B., Erdös, E.G. Circ. Res. (1997) [Pubmed]
  18. Proteolytic conversion of [Met]enkephalin-Arg6-Gly7-Leu8 by brain synaptic membranes. Characterization of formed peptides and mechanism of proteolysis. Norman, J.A., Chang, J.Y. J. Biol. Chem. (1985) [Pubmed]
  19. Brachial artery hemodynamic response to acute converting enzyme inhibition by enalaprilat in essential hypertension. Simon, A.C., Chau, N.P., Levenson, J. Clin. Pharmacol. Ther. (1988) [Pubmed]
  20. Protective effects of captopril against ischemic stress: role of cellular Mg. Barbagallo, M., Dominguez, L.J., Resnick, L.M. Hypertension (1999) [Pubmed]
  21. Bradykinin contribution to renal blood flow effect of angiotensin converting enzyme inhibitor in the conscious sodium-restricted dog. Zimmerman, B.G., Raich, P.C., Vavrek, R.J., Stewart, J.M. Circ. Res. (1990) [Pubmed]
  22. Attenuation of angiotensin II-mediated coronary vasoconstriction and vasodilatory action of angiotensin-converting enzyme inhibitor in pacing-induced heart failure in dogs. Oikawa, Y., Maehara, K., Saito, T., Tamagawa, K., Maruyama, Y. J. Am. Coll. Cardiol. (2001) [Pubmed]
  23. Renal interstitial fluid angiotensin I and angiotensin II concentrations during local angiotensin-converting enzyme inhibition. Nishiyama, A., Seth, D.M., Navar, L.G. J. Am. Soc. Nephrol. (2002) [Pubmed]
  24. Bradykinin-induced vasodilation of human coronary arteries in vivo: role of nitric oxide and angiotensin-converting enzyme. Kuga, T., Mohri, M., Egashira, K., Hirakawa, Y., Tagawa, T., Shimokawa, H., Takeshita, A. J. Am. Coll. Cardiol. (1997) [Pubmed]
  25. Kinin B1 receptors stimulate nitric oxide production in endothelial cells: signaling pathways activated by angiotensin I-converting enzyme inhibitors and peptide ligands. Ignjatovic, T., Stanisavljevic, S., Brovkovych, V., Skidgel, R.A., Erdös, E.G. Mol. Pharmacol. (2004) [Pubmed]
  26. Influence of angiotensin-converting enzyme inhibitor enalaprilat on endothelial-derived substances in the critically ill. Boldt, J., Papsdorf, M., Kumle, B., Piper, S., Hempelmann, G. Crit. Care Med. (1998) [Pubmed]
  27. Endogenous endothelium-derived nitric oxide inhibits myocardial caspase activity: implications for treatment of end-stage heart failure. Mital, S., Barbone, A., Addonizio, L.J., Quaegebeur, J.M., Mosca, R.J., Oz, M.C., Hintze, T.H. J. Heart Lung Transplant. (2002) [Pubmed]
  28. Zofenopril inhibits the expression of adhesion molecules on endothelial cells by reducing reactive oxygen species. Cominacini, L., Pasini, A., Garbin, U., Evangelista, S., Crea, A.E., Tagliacozzi, D., Nava, C., Davoli, A., LoCascio, V. Am. J. Hypertens. (2002) [Pubmed]
  29. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Schunkert, H., Jackson, B., Tang, S.S., Schoen, F.J., Smits, J.F., Apstein, C.S., Lorell, B.H. Circulation (1993) [Pubmed]
  30. Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Westlin, W., Mullane, K. Circulation (1988) [Pubmed]
  31. Furosemide-131I-hippuran renography after angiotensin-converting enzyme inhibition for the diagnosis of renovascular hypertension. Erbslöh-Möller, B., Dumas, A., Roth, D., Sfakianakis, G.N., Bourgoignie, J.J. Am. J. Med. (1991) [Pubmed]
WikiGenes - Universities