The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Gly-Sar     2-(2-aminoethanoyl-methyl- amino)ethanoic acid

Synonyms: Gly-Sarcosin, CHEMBL175737, ACMC-209hb7, G3127_SIGMA, ANW-26705, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC206288

 

High impact information on NSC206288

  • Apical (but not basolateral) leptin increased Caco-2 cell transport of cephalexin (CFX) and glycylsarcosine (Gly-Sar), an effect that was associated with increased Gly-Sar uptake, increased membrane PepT1 protein, decreased intracellular PepT1 content, and no change in PepT1 mRNA levels [6].
  • In addition, fMLP competitively inhibited uptake of a known hPepT1 substrate (glycylsarcosine) in hPepT1 expressing oocytes. hPepT1 peptide uptake was further examined in a polarized human intestinal epithelial cell line (Caco2-BBE) known to express this transporter [7].
  • The work was carried out with rings of everted hamster jejunum in vitro, under conditions of influx, using the "model" peptides glycylsarcosine, glycylsarcosylsarcosine, and glycylsarcosylsarcosylsarcosine [8].
  • The transport of the dipeptide glycylsarcosine (Gly-Sar) was studied in this cell line grown as a confluent monolayer on impermeable plastic supports [9].
  • Notwithstanding the lack of apparent biological effects, the proton-stimulated uptake of 1.9 microm glycylsarcosine (a model, hydrolysis-resistant dipeptide) in isolated choroid plexus was essentially ablated (i.e. residual activity of 10.9 and 3.9% at 5 and 30 min, respectively) [10].
 

Biological context of NSC206288

 

Anatomical context of NSC206288

 

Associations of NSC206288 with other chemical compounds

 

Gene context of NSC206288

 

Analytical, diagnostic and therapeutic context of NSC206288

References

  1. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Nakanishi, T., Tamai, I., Sai, Y., Sasaki, T., Tsuji, A. Cancer Res. (1997) [Pubmed]
  2. Lactobacillus casei alters hPEPT1-mediated glycylsarcosine uptake in Caco-2 cells. Neudeck, B.L., Loeb, J.M., Faith, N.G. J. Nutr. (2004) [Pubmed]
  3. Role of PEPT2 in glycylsarcosine transport in astrocyte and glioma cultures. Xiang, J., Chiang, P.P., Hu, Y., Smith, D.E., Keep, R.F. Neurosci. Lett. (2006) [Pubmed]
  4. Conformational limitations of glycylsarcosine as a prototypic substrate for peptide transporters. Payne, J.W., Payne, G.M., Gupta, S., Marshall, N.J., Grail, B.M. Biochim. Biophys. Acta (2001) [Pubmed]
  5. Effect of diabetes mellitus and insulin on the regulation of the PepT 1 symporter in rat jejunum. Bikhazi, A.B., Skoury, M.M., Zwainy, D.S., Jurjus, A.R., Kreydiyyeh, S.I., Smith, D.E., Audette, K., Jacques, D. Mol. Pharm. (2004) [Pubmed]
  6. PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. Buyse, M., Berlioz, F., Guilmeau, S., Tsocas, A., Voisin, T., Péranzi, G., Merlin, D., Laburthe, M., Lewin, M.J., Rozé, C., Bado, A. J. Clin. Invest. (2001) [Pubmed]
  7. hPepT1-mediated epithelial transport of bacteria-derived chemotactic peptides enhances neutrophil-epithelial interactions. Merlin, D., Steel, A., Gewirtz, A.T., Si-Tahar, M., Hediger, M.A., Madara, J.L. J. Clin. Invest. (1998) [Pubmed]
  8. Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Sleisenger, M.H., Burston, D., Dalrymple, J.A., Wilkinson, S., Mathews, D.M. Gastroenterology (1976) [Pubmed]
  9. Identification of a renal cell line that constitutively expresses the kidney-specific high-affinity H+/peptide cotransporter. Brandsch, M., Brandsch, C., Prasad, P.D., Ganapathy, V., Hopfer, U., Leibach, F.H. FASEB J. (1995) [Pubmed]
  10. Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. Shen, H., Smith, D.E., Keep, R.F., Xiang, J., Brosius, F.C. J. Biol. Chem. (2003) [Pubmed]
  11. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. Ganapathy, V., Burckhardt, G., Leibach, F.H. J. Biol. Chem. (1984) [Pubmed]
  12. Kinetics of uptake of L-leucine and glycylsarcosine into normal and protein malnourished young rat jejunum. Miller, P.M., Burston, D., Brueton, M.J., Matthews, D.M. Pediatr. Res. (1984) [Pubmed]
  13. Interaction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes. Takahashi, K., Nakamura, N., Terada, T., Okano, T., Futami, T., Saito, H., Inui, K.I. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  14. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles. Miyamoto, Y., Ganapathy, V., Leibach, F.H. Biochem. Biophys. Res. Commun. (1985) [Pubmed]
  15. Screening of the interaction between xenobiotic transporters and PDZ proteins. Kato, Y., Yoshida, K., Watanabe, C., Sai, Y., Tsuji, A. Pharm. Res. (2004) [Pubmed]
  16. A novel H(+)-coupled oligopeptide transporter (OPT3) from Caenorhabditis elegans with a predominant function as a H(+) channel and an exclusive expression in neurons. Fei, Y.J., Romero, M.F., Krause, M., Liu, J.C., Huang, W., Ganapathy, V., Leibach, F.H. J. Biol. Chem. (2000) [Pubmed]
  17. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. Thwaites, D.T., Brown, C.D., Hirst, B.H., Simmons, N.L. J. Biol. Chem. (1993) [Pubmed]
  18. Differential recognition of beta -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. Ganapathy, M.E., Brandsch, M., Prasad, P.D., Ganapathy, V., Leibach, F.H. J. Biol. Chem. (1995) [Pubmed]
  19. Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes. Calonge, M.L., Ilundain, A., Bolufer, J. J. Cell. Physiol. (1989) [Pubmed]
  20. Mechanism of dipeptide stimulation of its own transport in a human intestinal cell line. Thamotharan, M., Bawani, S.Z., Zhou, X., Adibi, S.A. Proc. Assoc. Am. Physicians (1998) [Pubmed]
  21. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Ganapathy, M.E., Huang, W., Wang, H., Ganapathy, V., Leibach, F.H. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  22. Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice. Ocheltree, S.M., Shen, H., Hu, Y., Xiang, J., Keep, R.F., Smith, D.E. Pharm. Res. (2004) [Pubmed]
  23. Transport of the beta-lactam antibiotic benzylpenicillin and the dipeptide glycylsarcosine by brain capillary endothelial cells in vitro. Török, M., Huwyler, J., Drewe, J., Gutmann, H., Fricker, G. Drug Metab. Dispos. (1998) [Pubmed]
  24. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Zhu, T., Chen, X.Z., Steel, A., Hediger, M.A., Smith, D.E. Pharm. Res. (2000) [Pubmed]
  25. Inhibition of intestinal dipeptide transport by the neuropeptide VIP is an anti-absorptive effect via the VPAC1 receptor in a human enterocyte-like cell line (Caco-2). Anderson, C.M., Mendoza, M.E., Kennedy, D.J., Raldua, D., Thwaites, D.T. Br. J. Pharmacol. (2003) [Pubmed]
  26. cDNA structure, genomic organization, and promoter analysis of the mouse intestinal peptide transporter PEPT1. Fei, Y.J., Sugawara, M., Liu, J.C., Li, H.W., Ganapathy, V., Ganapathy, M.E., Leibach, F.H. Biochim. Biophys. Acta (2000) [Pubmed]
  27. Role and relevance of peptide transporter 2 (PEPT2) in the kidney and choroid plexus: in vivo studies with glycylsarcosine in wild-type and PEPT2 knockout mice. Ocheltree, S.M., Shen, H., Hu, Y., Keep, R.F., Smith, D.E. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  28. Na+/H+ exchanger 3 affects transport property of H+/oligopeptide transporter 1. Watanabe, C., Kato, Y., Ito, S., Kubo, Y., Sai, Y., Tsuji, A. Drug Metab. Pharmacokinet. (2005) [Pubmed]
  29. Role of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: studies in rat choroid plexus epithelial cells in primary culture. Shu, C., Shen, H., Teuscher, N.S., Lorenzi, P.J., Keep, R.F., Smith, D.E. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
  30. Mechanism of clearance and transfer of dipeptides by perfused human placenta. Adibi, S.A., Schenker, S., Morse, E. Am. J. Physiol. (1996) [Pubmed]
  31. Effect of nephrectomy and enterectomy on plasma clearance of intravenously administered dipeptides in rats. Adibi, S.A., Krzysik, B.A. Clinical science and molecular medicine. (1977) [Pubmed]
  32. Clearance of dipeptides from plasma: role of kidney and intestine. Adibi, S.A. Ciba Found. Symp. (1977) [Pubmed]
 
WikiGenes - Universities