The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Prinivil     (2S)-1-[(2S)-6-amino-2- [[(1S)-1-carboxy-3...

Synonyms: Acercomp, Inhibril, Linopril, Lisipril, Noperten, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of lisinopril

 

Psychiatry related information on lisinopril

 

High impact information on lisinopril

 

Chemical compound and disease context of lisinopril

 

Biological context of lisinopril

  • High-dose lisinopril reduced arterial blood pressure and normalized right ventricular and LV weight and resulted in a substantial reduction of 1-year mortality, whereas the low dose did not (1 year mortality: placebo, 56.3%; low dose, 53.3%; high dose, 22.9%, P < .0001 versus low dose and versus placebo) [18].
  • Administration of lisinopril attenuated the development of left and right ventricular hypertrophy in this model and was accompanied by an attenuation of the upregulation of the ACE, collagen type I-alpha, and vimentin mRNAs [19].
  • In addition, the inhibitory potency of captopril (C), enalaprilat (E), and lisinopril (L) for each domain was assayed by hydrolysis of Hip-His-Leu [20].
  • AER at 2 years (adjusted for baseline AER) was 51.3% lower on lisinopril than placebo in the II genotype patients (95% CI, 15.7 to 71.8; P = 0.01), 14.8% in the ID group (-7.8 to 32.7; P = 0.2), and 7.7% in the DD group (-36.6 to 37.6; P = 0.7) [21].
  • Pharmacokinetics of lisinopril [22].
 

Anatomical context of lisinopril

  • Thus, in SHR with LVH and adverse structural remodeling of the cardiac interstitium, lisinopril reversed fibrous tissue accumulation and medial thickening of intramyocardial coronary arteries and restored myocardial stiffness and coronary vascular reserve to normal [13].
  • Relative to placebo, lisinopril therapy was associated with only minimal, statistically insignificant changes in hemodynamics, a significant increase in myocardial beta-receptor density, no significant (P < .05) changes in cardiac or systemic adrenergic drive, and no detectable change in lymphocyte beta-receptor density [23].
  • The effects of endothelium removal and of local incubation with the converting enzyme inhibitor lisinopril (ICI Pharma 209000) on the carotid compliance (CC) were compared with the effects of total abolition of the vascular smooth muscle tone by potassium cyanide [24].
  • Angiotensin-converting enzyme was purified from human lung, kidney, testis, blood plasma, and seminal plasma using a facile two-step protocol which included affinity chromatography on Sepharose-bound lisinopril followed by either gel filtration or hydroxylapatite chromatography [25].
  • Neutralization of TGFbeta1 by anti-TGFbeta1 or lisinopril resulted in less collagen deposition and less accumulation of myofibroblasts, and levels of active TGFbeta1 and ACE were reduced in thyroids of treated mice compared with those of untreated controls [26].
 

Associations of lisinopril with other chemical compounds

 

Gene context of lisinopril

 

Analytical, diagnostic and therapeutic context of lisinopril

References

  1. Fulminant hepatitis after lisinopril administration. Larrey, D., Babany, G., Bernuau, J., Andrieux, J., Degott, C., Pessayre, D., Benhamou, J.P. Gastroenterology (1990) [Pubmed]
  2. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Kuno, A., Yamada, T., Masuda, K., Ogawa, K., Sogawa, M., Nakamura, S., Nakazawa, T., Ohara, H., Nomura, T., Joh, T., Shirai, T., Itoh, M. Gastroenterology (2003) [Pubmed]
  3. Lisinopril and renal failure. Heeg, J.E., de Jong, P.E., de Zeeuw, D. Lancet (1989) [Pubmed]
  4. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Chaturvedi, N., Sjolie, A.K., Stephenson, J.M., Abrahamian, H., Keipes, M., Castellarin, A., Rogulja-Pepeonik, Z., Fuller, J.H. Lancet (1998) [Pubmed]
  5. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial. Rydén, L., Armstrong, P.W., Cleland, J.G., Horowitz, J.D., Massie, B.M., Packer, M., Poole-Wilson, P.A. Eur. Heart J. (2000) [Pubmed]
  6. Impact of angiotensin converting enzyme inhibition on the haemodynamic profile during laboratory stress tests. Schmieder, R.E., Rüddel, H., Schächinger, H., Schulte, W. Journal of human hypertension. (1992) [Pubmed]
  7. Quality of life, side effects and efficacy of lisinopril compared with metoprolol in patients with mild to moderate essential hypertension. Frimodt-Moeller, J., Poulsen, D.L., Kornerup, H.J., Bech, P. Journal of human hypertension. (1991) [Pubmed]
  8. Hypotensive effects of angiotensin II analogues and angiotensin converting enzyme inhibitors in water-deprived Brattleboro rats. Tomlinson, K.C., Gardiner, S.M., Bennett, T. J. Cardiovasc. Pharmacol. (1990) [Pubmed]
  9. Long-term evaluation of combined antihypertensive therapy with lisinopril and a thiazide diuretic in patients with essential hypertension. Ishimitsu, T., Yagi, S., Ebihara, A., Doi, Y., Domae, A., Shibata, A., Kimura, M., Sugishita, Y., Sagara, E., Sakamaki, T., Murata, K. Japanese heart journal. (1997) [Pubmed]
  10. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Rouleau, J.L., Pfeffer, M.A., Stewart, D.J., Isaac, D., Sestier, F., Kerut, E.K., Porter, C.B., Proulx, G., Qian, C., Block, A.J. Lancet (2000) [Pubmed]
  11. Adult Schönlein-Henoch purpura after lisinopril. Disdier, P., Harlé, J.R., Verrot, D., Jouglard, J., Weiller, P.J. Lancet (1992) [Pubmed]
  12. Isolation of a neuropeptide-degrading carboxypeptidase from the human stomach. Bunnett, N.W., Goldstein, S.M., Nakazato, P. Gastroenterology (1992) [Pubmed]
  13. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Brilla, C.G., Janicki, J.S., Weber, K.T. Circulation (1991) [Pubmed]
  14. Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy. SAMPLE Study Group. Study on Ambulatory Monitoring of Blood Pressure and Lisinopril Evaluation. Mancia, G., Zanchetti, A., Agabiti-Rosei, E., Benemio, G., De Cesaris, R., Fogari, R., Pessina, A., Porcellati, C., Rappelli, A., Salvetti, A., Trimarco, B., Agebiti-Rosei, E., Pessino, A. Circulation (1997) [Pubmed]
  15. Differences between nisoldipine and lisinopril on glomerular filtration rates and albuminuria in hypertensive IDDM patients with diabetic nephropathy during the first year of treatment. Rossing, P., Tarnow, L., Boelskifte, S., Jensen, B.R., Nielsen, F.S., Parving, H.H. Diabetes (1997) [Pubmed]
  16. Brain natriuretic peptide as a marker for hypertensive left ventricular hypertrophy: changes during 1-year antihypertensive therapy with angiotensin-converting enzyme inhibitor. Kohno, M., Horio, T., Yokokawa, K., Yasunari, K., Ikeda, M., Minami, M., Kurihara, N., Takeda, T. Am. J. Med. (1995) [Pubmed]
  17. Short- and long-acting angiotensin-converting enzyme inhibitors: a randomized trial of lisinopril versus captopril in the treatment of congestive heart failure. The Multicenter Lisinopril-Captopril Congestive Heart Failure Study Group. Giles, T.D., Katz, R., Sullivan, J.M., Wolfson, P., Haugland, M., Kirlin, P., Powers, E., Rich, S., Hackshaw, B., Chiaramida, A. J. Am. Coll. Cardiol. (1989) [Pubmed]
  18. Survival after myocardial infarction in the rat. Role of tissue angiotensin-converting enzyme inhibition. Wollert, K.C., Studer, R., von Bülow, B., Drexler, H. Circulation (1994) [Pubmed]
  19. Cardiac renin-angiotensin system in the hypertrophied heart. Iwai, N., Shimoike, H., Kinoshita, M. Circulation (1995) [Pubmed]
  20. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. Wei, L., Clauser, E., Alhenc-Gelas, F., Corvol, P. J. Biol. Chem. (1992) [Pubmed]
  21. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomized Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM. Penno, G., Chaturvedi, N., Talmud, P.J., Cotroneo, P., Manto, A., Nannipieri, M., Luong, L.A., Fuller, J.H. Diabetes (1998) [Pubmed]
  22. Pharmacokinetics of lisinopril. Beermann, B. Am. J. Med. (1988) [Pubmed]
  23. Lisinopril lowers cardiac adrenergic drive and increases beta-receptor density in the failing human heart. Gilbert, E.M., Sandoval, A., Larrabee, P., Renlund, D.G., O'Connell, J.B., Bristow, M.R. Circulation (1993) [Pubmed]
  24. Endothelium-dependent mechanical properties of the carotid artery in WKY and SHR. Role of angiotensin converting enzyme inhibition. Levy, B.I., Benessiano, J., Poitevin, P., Safar, M.E. Circ. Res. (1990) [Pubmed]
  25. Angiotensin-converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. Lanzillo, J.J., Stevens, J., Dasarathy, Y., Yotsumoto, H., Fanburg, B.L. J. Biol. Chem. (1985) [Pubmed]
  26. Inhibition of TGFbeta1 by anti-TGFbeta1 antibody or lisinopril reduces thyroid fibrosis in granulomatous experimental autoimmune thyroiditis. Chen, K., Wei, Y., Sharp, G.C., Braley-Mullen, H. J. Immunol. (2002) [Pubmed]
  27. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Packer, M., Poole-Wilson, P.A., Armstrong, P.W., Cleland, J.G., Horowitz, J.D., Massie, B.M., Rydén, L., Thygesen, K., Uretsky, B.F. Circulation (1999) [Pubmed]
  28. Differential effects of kinins on cardiomyocyte hypertrophy and interstitial collagen matrix in the surviving myocardium after myocardial infarction in the rat. Wollert, K.C., Studer, R., Doerfer, K., Schieffer, E., Holubarsch, C., Just, H., Drexler, H. Circulation (1997) [Pubmed]
  29. Long-term effect of lisinopril and atenolol on kidney function in hypertensive NIDDM subjects with diabetic nephropathy. Nielsen, F.S., Rossing, P., Gall, M.A., Skøtt, P., Smidt, U.M., Parving, H.H. Diabetes (1997) [Pubmed]
  30. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. Tipnis, S.R., Hooper, N.M., Hyde, R., Karran, E., Christie, G., Turner, A.J. J. Biol. Chem. (2000) [Pubmed]
  31. Lisinopril as an antioxidant in hypertension? Polizio, A.H., Peña, C. Antioxid. Redox Signal. (2007) [Pubmed]
  32. Fibrous tissue and angiotensin II. Sun, Y., Ramires, F.J., Zhou, G., Ganjam, V.K., Weber, K.T. J. Mol. Cell. Cardiol. (1997) [Pubmed]
  33. Circulating plasma vascular endothelial growth factor and microvascular complications of type 1 diabetes mellitus: the influence of ACE inhibition. Chaturvedi, N., Fuller, J.H., Pokras, F., Rottiers, R., Papazoglou, N., Aiello, L.P. Diabet. Med. (2001) [Pubmed]
  34. A heart-specific increase in cardiotrophin-1 gene expression precedes the establishment of ventricular hypertrophy in genetically hypertensive rats. Ishikawa, M., Saito, Y., Miyamoto, Y., Harada, M., Kuwahara, K., Ogawa, E., Nakagawa, O., Hamanaka, I., Kajiyama, N., Takahashi, N., Masuda, I., Hashimoto, T., Sakai, O., Hosoya, T., Nakao, K. J. Hypertens. (1999) [Pubmed]
  35. Chronic ethanol ingestion increases superoxide production and NADPH oxidase expression in the lung. Polikandriotis, J.A., Rupnow, H.L., Elms, S.C., Clempus, R.E., Campbell, D.J., Sutliff, R.L., Brown, L.A., Guidot, D.M., Hart, C.M. Am. J. Respir. Cell Mol. Biol. (2006) [Pubmed]
  36. Lisinopril decreases plasma free testosterone in male hypertensive patients and increases sex hormone binding globulin in female hypertensive patients. Koshida, H., Takeda, R., Miyamori, I. Hypertens. Res. (1998) [Pubmed]
  37. Individual titration for maximal blockade of the renin-angiotensin system in proteinuric patients: a feasible strategy? Vogt, L., Navis, G., de Zeeuw, D. J. Am. Soc. Nephrol. (2005) [Pubmed]
  38. Augmentation of myocardial blood flow in hypertensive heart disease by angiotensin antagonists: a comparison of lisinopril and losartan. Akinboboye, O.O., Chou, R.L., Bergmann, S.R. J. Am. Coll. Cardiol. (2002) [Pubmed]
 
WikiGenes - Universities